Computational specificity in the human brain

2016 ◽  
Vol 39 ◽  
Author(s):  
James M. Shine ◽  
Ian Eisenberg ◽  
Russell A. Poldrack

AbstractAlthough meta-analytic neuroimaging studies demonstrate a relative lack of specificity in the brain, this evidence may be the result of limits inherent to these types of studies. From this perspective, we review recent findings that suggest that brain function is most appropriately categorized according to the computational capacity of each brain system, rather than the specific task states that elicit its activity.

Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2013 ◽  
Vol 15 (1) ◽  
pp. 99-108 ◽  

The human brain shrinks with advancing age, but recent research suggests that it is also capable of remarkable plasticity, even in late life. In this review we summarize the research linking greater amounts of physical activity to less cortical atrophy, better brain function, and enhanced cognitive function, and argue that physical activity takes advantage of the brain's natural capacity for plasticity. Further, although the effects of physical activity on the brain are relatively widespread, there is also some specificity, such that prefrontal and hippocampal areas appear to be more influenced than other areas of the brain. The specificity of these effects, we argue, provides a biological basis for understanding the capacity for physical activity to influence neurocognitive and neuropsychiatric disorders such as depression. We conclude that physical activity is a promising intervention that can influence the endogenous pharmacology of the brain to enhance cognitive and emotional function in late adulthood.


Author(s):  
Susan Blackmore

‘The human brain’ considers the brain as a vast network of connections from which come our extraordinary abilities: perception, learning, memory, reasoning, language, and somehow or another—consciousness. Different areas deal with vision, hearing, speech, body image, motor control, and forward planning. They are all linked, but this is not done through one central processor, but by millions of criss-crossing connections. By contrast, human consciousness seems to be unified. A successful science of consciousness must therefore explain the contents of consciousness, the continuity of consciousness, and the self who is conscious. Research linking consciousness to brain function is discussed along with conditions such as synaesthesia, blindsight, stroke damage, and amnesia.


Author(s):  
Jack M. Gorman

Some scientists now argue that humans are really not superior to other species, including our nearest genetic neighbors, chimpanzees and bonobos. Indeed, those animals seem capable of many things previously thought to be uniquely human, including a sense of the future, empathy, depression, and theory of mind. However, it is clear that humans alone produce speech, dominate the globe, and have several brain diseases like schizophrenia. There are three possible sources within the brain for these differences in brain function: in the structure of the brain, in genes coding for proteins in the brain, and in the level of expression of genes in the brain. There is evidence that all three are the case, giving us a place to look for the intersection of the human mind and brain: the expression of genes within neurons of the prefrontal cortex.


2000 ◽  
Vol 12 (1-2) ◽  
pp. 53-67 ◽  
Author(s):  
Daniela Montaldi ◽  
Andrew R. Mayes

The last ten years have seen the development and expansion of an exciting new field of neuroscientific research; functional mapping of the human brain. Whilst many of the questions addressed by this area of research could be answered using SPECT, relatively few SPECT activation studies of this kind have been carried out. The present paper combines an evaluation of SPECT procedures used for neuroactivation studies, and their comparison with other imaging modalities (i.e., PET and fMRI), with a review of SPECT neuroactivation studies that yield information concerning normal brain function with a particular emphasis on the brain activations produced by memory processing. The paper aims to describe and counter common misunderstandings regarding potential limitations of the SPECT technique, to explain and illustrate which SPECT procedures best fulfill the requirements of a neuroactivation study, and how best to obtain information about normal brain function (whether using normal healthy subjects or patients) and finally to highlight SPECT’s potential future role in the functional mapping of the human brain.


2020 ◽  
Author(s):  
Sreejan Kumar ◽  
Cameron T. Ellis ◽  
Thomas O’Connell ◽  
Marvin M Chun ◽  
Nicholas B. Turk-Browne

AbstractThe extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model are more widely distributed across the brain than previously acknowledged. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Bashar W. Badran ◽  
Kevin A. Caulfield ◽  
Claire Cox ◽  
James W. Lopez ◽  
Jeffrey J. Borckardt ◽  
...  

Abstract We are just beginning to understand how spaceflight may impact brain function. As NASA proceeds with plans to send astronauts to the Moon and commercial space travel interest increases, it is critical to understand how the human brain and peripheral nervous system respond to zero gravity. Here, we developed and refined head-worn transcranial magnetic stimulation (TMS) systems capable of reliably and quickly determining the amount of electromagnetism each individual needs to detect electromyographic (EMG) threshold levels in the thumb (called the resting motor threshold (rMT)). We then collected rMTs in 10 healthy adult participants in the laboratory at baseline, and subsequently at three time points onboard an airplane: (T1) pre-flight at Earth gravity, (T2) during zero gravity periods induced by parabolic flight and (T3) post-flight at Earth gravity. Overall, the subjects required 12.6% less electromagnetism applied to the brain to cause thumb muscle activation during weightlessness compared to Earth gravity, suggesting neurophysiological changes occur during brief periods of zero gravity. We discuss several candidate explanations for this finding, including upward shift of the brain within the skull, acute increases in cortical excitability, changes in intracranial pressure, and diffuse spinal or neuromuscular system effects. All of these possible explanations warrant further study. In summary, we documented neurophysiological changes during brief episodes of zero gravity and thus highlighting the need for further studies of human brain function in altered gravity conditions to optimally prepare for prolonged microgravity exposure during spaceflight.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rui Chen ◽  
Zhenzhong Li ◽  
Yi Lai

The purpose of this research is to explore the optimization and fusion application of multimodal neuroimaging technology and analyze the evaluation method of human brain fatigue based on multimodal neuroimaging technology. Based on electroencephalogram (EEG) and fMRI (functional magnetic resonance imaging), the four-dimensional consistency of local neural activities (FOCA) and local multimodal serial analysis (LMSA) are first introduced to fuse EEG and fMRI organically. Second, the eigenspace maximal information canonical correlation analysis (emiCCA) is introduced to construct the multimodal neuroimaging data fusion system. Finally, how the brain function network is constructed is introduced. Based on the binary and the weighted brain function networks, the relationship between the human brain fatigue and the brain function network is evaluated by calculating the fractal dimension. Results demonstrate that FOCA performs well in temporal and spatial consistency indexes, and the mean level and standard deviation in the case of temporal and spatial consistency are approximately 0.45. The effect of LMSA indexes is significantly better than generalized linear models (GLMs). Under different signal-to-noise ratios (SNRs), the regression coefficient based on LMSA is much larger than the GLM estimate; the corresponding significance level is p < 0.05 ; and the maximum value of the regression coefficient appears near 0.2. In the data fusion system, the time-space matching has good results under the time accuracy based on EEG and the space accuracy based on fMRI, with the time accuracy above 88% and the space accuracy above 89%. The fractal dimension analysis based on the brain function network reveals that the weighted brain function network is more sensitive to mental fatigue. The state of human brain fatigue will make the brain function network more complicated. The fractal dimension with more network edges is around 2.2, while the fractal dimension with fewer network edges is around 1.6. The proposed data analysis and fusion system have great application potential and propose a new idea for analyzing human brain fatigue and brain aging.


Sign in / Sign up

Export Citation Format

Share Document