scholarly journals Accretion of Protobinary and Evolution of the Mass Ratio

2004 ◽  
Vol 191 ◽  
pp. 163-167
Author(s):  
Tomoyuki Hanawa ◽  
Yasuhiro Ochi ◽  
Kanako Sugimoto

AbstractWe have reexamined accretion in a protobinary system with two dimensional numerical simulations. We consider protostars which rotate around the center of the mass with circular orbits. The accreting gas is assumed to flow in the orbital plane. It is injected from a circle whose radius is 5 times larger than the orbital separation of the binary. The injected gas has constant surface density, in fall velocity, and specific angular momentum. The accretion depends on the specific angular momentum of the injected gas, jinf. When jinf is small, the binary accretes the gas mainly through two channels: one through the Lagrangian point L2 and the other through L3. When jinf is large, the binary accretes the gas only through the L2 point. The primary accretes more than the secondary in both cases, although the L2 point is closer to the secondary. After flowing through the L2 point, the gas flows half around the secondary and through the L1 point to the primary. Only a small amount of gas flows back to the secondary and the rest forms a circumstellar ring around the primary. The accretion decreases the mass ratio, q = M2/M1, where M1 and M2 denote the masses of the primary and secondary, respectively. The accretion rate increases with time. When jinf is large, it is negligibly small in the first few rotation periods.

1961 ◽  
Vol 28 (1) ◽  
pp. 71-77 ◽  
Author(s):  
C. P. Atkinson

This paper presents a method for analyzing a pair of coupled nonlinear differential equations of the Duffing type in order to determine whether linearly related modal oscillations of the system are possible. The system has two masses, a coupling spring and two anchor springs. For the systems studied, the anchor springs are symmetric but the masses are not. The method requires the solution of a polynomial of fourth degree which reduces to a quadratic because of the symmetric springs. The roots are a function of the spring constants. When a particular set of spring constants is chosen, roots can be found which are then used to set the necessary mass ratio for linear modal oscillations. Limits on the ranges of spring-constant ratios for real roots and positive-mass ratios are given. A general stability analysis is presented with expressions for the stability in terms of the spring constants and masses. Two specific examples are given.


2021 ◽  
Vol 57 (2) ◽  
pp. 279-295
Author(s):  
L. O. Marchi ◽  
D. M. Sanchez ◽  
F. C. F. Venditti ◽  
A. F. B. A. Prado ◽  
A. K. Misra

In this work, we study the effects of solar radiation pressure (SRP) on the problem of changing the orbit of an asteroid to support planetary defense, scientific research, or exploitation of materials. This alternative considers a tethered reflective balloon (or a set of reflective balloons) attached to the asteroid, with a high area-to-mass ratio, to use the SRP to deflect a potentially hazardous asteroid (PHA) or to approximate the target asteroid to Earth. The tether is assumed to be inextensible and massless, and the motion is described only in the orbital plane of the asteroid around the Sun. The model is then used to study the effects that the tether length, the reflectivity coefficient, and the area-to-mass ratio have on the deviation of the trajectory of the asteroid.


2020 ◽  
Vol 492 (1) ◽  
pp. 1008-1024 ◽  
Author(s):  
Edward Gillen ◽  
Joshua T Briegal ◽  
Simon T Hodgkin ◽  
Daniel Foreman-Mackey ◽  
Floor Van Leeuwen ◽  
...  

ABSTRACT We determine rotation periods for 127 stars in the ∼115-Myr-old Blanco 1 open cluster using ∼200 d of photometric monitoring with the Next Generation Transit Survey. These stars span F5–M3 spectral types (1.2 M⊙ ≳ M ≳ 0.3 M⊙) and increase the number of known rotation periods in Blanco 1 by a factor of four. We determine rotation periods using three methods: Gaussian process (GP) regression, generalized autocorrelation function (G-ACF), and Lomb–Scargle (LS) periodogram, and find that the GP and G-ACF methods are more applicable to evolving spot modulation patterns. Between mid-F and mid-K spectral types, single stars follow a well-defined rotation sequence from ∼2 to 10 d, whereas stars in photometric multiple systems typically rotate faster. This may suggest that the presence of a moderate-to-high mass ratio companion inhibits angular momentum loss mechanisms during the early pre-main sequence, and this signature has not been erased at ∼100 Myr. The majority of mid-F to mid-K stars display evolving modulation patterns, whereas most M stars show stable modulation signals. This morphological change coincides with the shift from a well-defined rotation sequence (mid-F to mid-K stars) to a broad rotation period distribution (late-K and M stars). Finally, we compare our rotation results for Blanco 1 to the similarly aged Pleiades: the single-star populations in both clusters possess consistent rotation period distributions, which suggests that the angular momentum evolution of stars follows a well-defined pathway that is, at least for mid-F to mid-K stars, strongly imprinted by ∼100 Myr.


2019 ◽  
Vol 488 (3) ◽  
pp. 4338-4355 ◽  
Author(s):  
Linhao Ma ◽  
Jim Fuller

Abstract The internal rotational dynamics of massive stars are poorly understood. If angular momentum (AM) transport between the core and the envelope is inefficient, the large core AM upon core-collapse will produce rapidly rotating neutron stars (NSs). However, observations of low-mass stars suggest an efficient AM transport mechanism is at work, which could drastically reduce NS spin rates. Here, we study the effects of the baroclinic instability and the magnetic Tayler instability in differentially rotating radiative zones. Although the baroclinic instability may occur, the Tayler instability is likely to be more effective for AM transport. We implement Tayler torques as prescribed by Fuller, Piro, and Jermyn into models of massive stars, finding they remove the vast majority of the core’s AM as it contracts between the main-sequence and helium-burning phases of evolution. If core AM is conserved during core-collapse, we predict natal NS rotation periods of $P_{\rm NS} \approx 50\!-\!200 \, {\rm ms}$, suggesting these torques help explain the relatively slow rotation rates of most young NSs, and the rarity of rapidly rotating engine-driven supernovae. Stochastic spin-up via waves just before core-collapse, asymmetric explosions, and various binary evolution scenarios may increase the initial rotation rates of many NSs.


1989 ◽  
Vol 107 ◽  
pp. 348-349
Author(s):  
Bruce J. Hrivnak

Recent theories of the origin and evolution of contact binaries suggest that the two stars evolve into contact through angular momentum loss (AML; Mochnacki 1981, Vilhu 1982). When in contact, the system then evolves toward smaller mass ratio through mass transfer from the secondary to the primary component (Webbink 1976, Rahunen and Vilhu 1982). Most contact binaries have mass ratios of 0.3 to 0.5.


1986 ◽  
Vol 111 (3) ◽  
pp. 439-448 ◽  
Author(s):  
G. P. B. Kraan ◽  
T. E. Chapman ◽  
N. M. Drayer ◽  
B. Colenbrander ◽  
G. Buwalda

ABSTRACT Urinary cortisol production rate (CPR) was calculated by two different methods in five male piglets (about 3 kg bodyweight) injected i.v. with 40–120 kBq tritiated cortisol ([3H]F). After administration of [3H]F, urine was obtained from four consecutive collections for the following 2 days, during which 80–100% of the label was recovered. Total radioactivity in the urine was measured and used to calculate the total rate constant of 0·115 ± 0·011 h−1 and, from this, the mean biological half-life (t½) of 6·0±0·6 h (s.d.; n = 4). It was found that the mass ratio of the two principal urinary cortisol metabolites tetrahydrocortisone (THE) and tetrahydrocortisol (THF) was strikingly less than 1·0 (0·4±0·1; n= 14), which is the reverse of that observed in older pigs, neonatal infants and man. To calculate CPR conventionally, the cumulative specific activities of THE and THF were calculated for the 2-day period of urine collection. The apparent mean CPR values on the basis of THE and THF were calculated as 11·5±1·6 (n = 5) and 12·8 ± 3·3 (n = 5) μmol/day respectively, and 12·1 ± 1·4 (n = 5) μmol/day for the average of THE and THF. The second method for calculating CPR consisted of determining the masses of THE and THF (μmol) per fraction of dose (m/fd) (fd refers to the ratio of radioactivity in the metabolite and dose) at different times after administration of [3H]F. The calculated m/fd values, which are synonymous with the dose divided by the specific activities of the metabolites, and the different times of urine collection were analysed by linear regression. The resulting slope is equal to the CPR. The CPR derived by this method for the average of THE and THF, 10·1±0·91 μmol/ day was significantly (P<0·014) lower than that derived conventionally, 12·1 ± 1·40 μmol/day. This second method may be used when CPR is determined in neonatal infants by means of non-radioactive, deuterated or 13C-enriched cortisol, where the extent of negative feedback by the relatively high dose of exogenous steroid on cortisol secretion must be kept as low as possible. This method also allows urine collections to be used at times when the tracer is still being excreted. J. Endocr. (1986) 111, 439–448


A model has been developed for the collapse of an interstellar cloud with turbulence. The differential equations which describe the evolution of the cloud include ionic and dust cooling and also the dissipation of energy due to the collision of turbulent elements moving at supersonic speeds. Under some conditions the collision of two elements can give rise to a star and the rate of star formation and the mass of the stars formed changes as the cloud collapses. The pattern found is that the stars first produced have masses of about 1.4 M . and the masses get less as star formation continues. Stars produced by this mechanism have little associated angular momentum. Some of the stars which happen to move in high density regions of the cloud may increase their mass greatly by accretion; these stars will be the more massive stars and they will also rotate most rapidly, a theoretical prediction which agrees with observation. On the basis of the model the proportion of stars which would have planetary systems is estimated. This shows that there should be of order 10 6 planetary systems per galaxy.


2004 ◽  
Vol 194 ◽  
pp. 192-193
Author(s):  
Dean M. Townsley ◽  
Lars Bildsten

AbstractWe have undertaken a theoretical study of the impact of the accumulating envelopes on the thermal state of the underlying white dwarf (WD). This has allowed us to find the equilibrium WD core temperatures, the classical nova ignition masses and the thermal luminosities for WDs accreting at rates of 10–11 – 10–8M⊙ yr–1. These accretion rates are most, appropriate to WDs in cataclysmic variables (CVs) of (Porb ≲ 7 hr), many of which accrete sporadically as Dwarf Novae. Over twenty Dwarf Novae have been observed in quiescence, when the accretion rate is low and the WD photosphere is detected and Teff measured. Comparing our theoretical work to these observations allows us to constrain the WD mass and the time averaged accretion rate, ⟨Ṁ⟩. If ⟨Ṁ⟩ is that given by gravitational radiation losses alone, then the WD masses are > 0.8 M⊙. An alternative conclusion is that the masses are closer to 0.6M⊙ and ⟨Ṁ⟩ is 3-4 times larger than that expected from gravitational radiation losses.


1989 ◽  
Vol 134 ◽  
pp. 62-64
Author(s):  
Amri Wandel

The UV continuum spectrum is used to extract the mass (and accretion rate) of quasars and AGN, assuming the UV is dominated by the emission from a thin accretion disk. This is done by fitting the observed luminosity and spectral slope in the UV by an accretion disk mode, giving the accretion parameters (black hole mass and accretion rate). An independent estimate of the mass is obtained using the emission-line method, which assumes that the velocity dispersion of the broad emission-line s is induced by the gravitational potential of the central compact object. For a sample of 36 quasars and Seyfert 1 galaxies, for which both data, the UV spectrum and the Hβ line width are available, the masses calculated with the two independent methods are in good agreement (within a factor of 2 for 75% of the sample) and highly correlated. Over three orders of magnitude in luminosity, the mass is found to increase less than linearely with luminosity, being in the range 108 < M < 1010M⊙, with L(1450A)/LEdd ranging from 0.001 for Seyferts to 0.03 for bright quasars.


2020 ◽  
Vol 493 (3) ◽  
pp. 4022-4038 ◽  
Author(s):  
Kurt Liffman ◽  
Geoffrey Bryan ◽  
Mark Hutchison ◽  
Sarah T Maddison

ABSTRACT The interaction between a YSO stellar magnetic field and its protostellar disc can result in stellar accretional flows and outflows from the inner disc rim. Gas flows with a velocity component perpendicular to disc mid-plane subject particles to centrifugal acceleration away from the protostar, resulting in particles being catapulted across the face of the disc. The ejected material can produce a ‘dust fan’, which may be dense enough to mimic the appearance of a ‘puffed-up’ inner disc rim. We derive analytical equations for the time-dependent disc toroidal field, the disc magnetic twist, the size of the stable toroidal disc region, the jet speed, and the disc region of maximal jet flow speed. We show how the observed infrared variability of the pre-transition disc system LRLL 31 can be modelled by a dust ejecta fan from the inner-most regions of the disc whose height is partially dependent on the jet flow speed. The greater the jet flow speed, the higher is the potential dust fan scale height. An increase in mass accretion on to the star tends to increase the height and optical depth of the dust ejection fan, increasing the amount of 1–8 µm radiation. The subsequent shadow reduces the amount of light falling on the outer disc and decreases the 8–40 µm radiation. A decrease in the accretion rate reverses this scenario, thereby producing the observed ‘see-saw’ infrared variability.


Sign in / Sign up

Export Citation Format

Share Document