scholarly journals Parameter Space of Shock Formation in Adiabatic Flows

1997 ◽  
Vol 159 ◽  
pp. 72-73
Author(s):  
Ju-Fu Lu ◽  
K.N. Yu ◽  
F. Yuan ◽  
E. C. M. Young

We study shock formation in a stationary, axisymmetric, adiabatic flow of a perfect fluid in the equatorial plane of a Kerr geometry. For such a flow, there exist two intrinsic constants of motion along a fluid world line, namely the specific total energy, E = −hut, and the specific angular momentum, l = −uφ/ut, where the uμ’s are the four velocity components, h is the specific enthalpy, i.e., h = (P + ε)/ρ, with P, ε, and ρ being the pressure, the mass-energy density, and the rest-mass density, respectively.As shown in Fig. 1 (Fig. la is for a Schwarzschild black hole, i.e. the hole’s specific angular momentum a = 0; Fig. lb is for a rapid Kerr hole, i.e. a = 0.99M, where M is the black-hole mass, and prograde flows: and Fig. 1c is for a = 0.99M and retrograde flows), in the parameter space spanned by E and l there is a strictly defined region bounded by four lines: three characteristic functional curves lk(E), lmax(E), and lmin(E), and the vertical line E = 1. Only such a flow with parameters located within this region can have two physically realizable sonic points, the inner one rin, and the outer one rout. In between there is still one more, but unrealizable, sonic point, rmid. The region is divided by another characteristic functional curve lc(E) into two parts: in region I (= Ia + Ib) only τout is realized in a shock-free global solution (i.e., that joining the black-hole horizon to large distances), while in region II (= IIa + IIb) only rin is realized.

2002 ◽  
Vol 19 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Alina-C. Donea ◽  
Peter L. Biermann

AbstractThis paper discusses the boundary layer and the emission spectrum from an accretion disk having a jet anchored at its inner radius, close to the black hole. We summarise our earlier work and apply it to the accretion disks of some blazars. We suggest that the ‘accretion disk with jet’ (ADJ) model could make the bridge between standard accretion disk models (suitable for quasars and FRii sources) and low-power advection dominated accretion disk models (suitable for some of the low-power BL Lacs and FRi sources).The jet is collimated within a very narrow region close to the black hole (nozzle). In our model it is assumed that the boundary layer of the disk is the region between radius Rms — the last marginally stable circular orbit calculated for a Kerr geometry — and the radius Rjet, which gives the thickness of the ‘footring’, i.e. the base of the jet. We analyse the size of the boundary layer of the disk where the jet is fed with energy, mass, and angular momentum. As a consequence of the angular momentum extraction, the accretion disk beyond Rjet no longer has a Keplerian flow. A hot corona usually surrounds the disk, and entrainment of the corona along the flow could also be important for the energy and mass budget of the jet.We assume that the gravitational energy available at the footring of the jet goes into the jet, and so the spectrum from the accretion disk gives a total luminosity smaller than that of a ‘standard’ accretion disk, and our ADJ model should apply for blazars with low central luminosities. Variations of the boundary layer and nozzle may account for some of the variability observed in active galactic nuclei.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Iosif Bena ◽  
Daniel R. Mayerson

Abstract We explain in detail how to calculate the gravitational mass and angular momentum multipoles of the most general non-extremal four-dimensional black hole with four magnetic and four electric charges. We also calculate these multipoles for generic supersymmetric four-dimensional microstate geometries and multi-center solutions. Both for Kerr black holes and BPS black holes many of these multipoles vanish. However, if one embeds these black holes in String Theory and slightly deforms them, one can calculate an infinite set of ratios of vanishing multipoles which remain finite as the deformation is taken away, and whose values are independent of the direction of deformation. For supersymmetric black holes, we can also compute these ratios by taking the scaling limit of multi-center solutions, and for certain black holes the ratios computed using the two methods agree spectacularly. For the Kerr black hole, these ratios pose strong constraints on the parameterization of possible deviations away from the Kerr geometry that should be tested by future gravitational wave interferometers.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2019 ◽  
Vol 15 (S359) ◽  
pp. 312-317
Author(s):  
Francoise Combes

AbstractGas fueling AGN (Active Galaxy Nuclei) is now traceable at high-resolution with ALMA (Atacama Large Millimeter Array) and NOEMA (NOrthern Extended Millimeter Array). Dynamical mechanisms are essential to exchange angular momentum and drive the gas to the super-massive black hole. While at 100pc scale, the gas is sometimes stalled in nuclear rings, recent observations reaching 10pc scale (50mas), may bring smoking gun evidence of fueling, within a randomly oriented nuclear gas disk. AGN feedback is also observed, in the form of narrow and collimated molecular outflows, which point towards the radio mode, or entrainment by a radio jet. Precession has been observed in a molecular outflow, indicating the precession of the radio jet. One of the best candidates for precession is the Bardeen-Petterson effect at small scale, which exerts a torque on the accreting material, and produces an extended disk warp. The misalignment between the inner and large-scale disk, enhances the coupling of the AGN feedback, since the jet sweeps a large part of the molecular disk.


2003 ◽  
Vol 208 ◽  
pp. 427-428
Author(s):  
D. Molteni ◽  
F. Fauci ◽  
G. Gerardi ◽  
M. A. Valenza

Results of 3D numerical simulations of the gas transfer in close binary systems show that it is possible the production of accretion streams having low specific angular momentum in a region close to the accreting star. These streams are mainly placed above the orbital disc. The eventual formation of such bulges and shock heated flows is interesting in the context of advection dominated solutions and for the explanation of spectral properties of the Black Hole candidates in binary systems. We set up a parallelized version of 3D S.P.H. code, using domain decomposion. with increasing spatial resolution around the compact star.


2002 ◽  
Vol 66 (10) ◽  
Author(s):  
Osvaldo Moreschi ◽  
Alejandro Perez ◽  
Luis Lehner

1981 ◽  
Vol 59 (5) ◽  
pp. 688-692 ◽  
Author(s):  
Nigel A. Sharp

The use of isometric embeddings of curved geometries reveals their intrinsic structure in a way that is readily appreciated. This is done for 3 two-surfaces sliced from the Kerr metric which describes a rotating black hole: the equatorial plane, the event horizon, and the ergosurface.


2006 ◽  
Vol 2 (S238) ◽  
pp. 367-368
Author(s):  
Keigo Fukumura ◽  
Masaaki Takahashi ◽  
Sachiko Tsuruta

AbstractWe study magnetohydrodynamic (MHD) standing shocks in ingoing plasmas in a black hole (BH) magnetosphere. We find that low or mid latitude (non-equatorial) standing MHD shocks are both physically possible, creating very hot and/or magnetized plasma regions close to the event horizon. We also investigate the effects of the poloidal magnetic field and the BH spin on the properties of shocks and show that both effects can quantitatively affect the MHD shock solutions. MHD shock formation can be a plausible mechanism for creating high energy radiation region above an accretion disk in AGNs.


Author(s):  
Ryotaro Ishikawa ◽  
Sergei V Ketov

Abstract We study the parameter space of the effective (with two scalars) models of cosmological inflation and primordial black hole (PBH) formation in the modified (R+ R 2) supergravity. Our models describe double inflation, whose first stage is driven by Starobinsky’s scalaron coming from the R 2 gravity, and whose second stage is driven by another scalar belonging to the supergravity multiplet. The ultra-slow-roll regime between the two stages leads a large peak (enhancement) in the power spectrum of scalar perturbations, which results in efficient PBH formation. Both inflation and PBH formation are generic in our models, while those PBH can account for a significant part or the whole of dark matter. Some of the earlier proposed models in the same class are in tension (over 3σ) with the observed value of the scalar tilt ns , so that we study more general models with more parameters, and investigate the dependence of the cosmological tilts (ns,r) and the scalar power spectrum enhancement upon the parameters. The PBH masses and their density fraction (as part of dark matter) are also calculated. A good agreement (between 2σ and 3σ) with the observed value of ns requires fine tuning of the parameters, and it is only realized in the so-called δ-models. Our models offer the (super)gravitational origin of inflation, PBH and dark matter together, and may be confirmed or falsified by future precision measurements of the cosmic microwave background radiation and PBH-induced gravitational waves.


Sign in / Sign up

Export Citation Format

Share Document