A Model of the Soft X-Ray Background as a Blast wave Viewed from Inside

1984 ◽  
Vol 81 ◽  
pp. 297-300
Author(s):  
Richard J. Edgar ◽  
Donald P. Cox

AbstractThe suggestion that the soft x-ray background arises In part from the Sun being inside a large (R ∼ 100 pc) supernova blastwave is examined by producing models of spherical blastwaves. Such models can produce quantitative fits to both surface brightnesses and energy band ratios (for the lowest energy bands) when t ∼ 105 yr, EO = 5 x 1050 ergs, and nO ≃ 0.004 cm-3.Such models can be generalized by varying the relative importance of such factors as thermal conduction, Coulomb heating of electrons, and external pressure; by allowing the explosions to occur In pre-existing cavities with steep density gradients, or by examining the effects of large obstructions or other anlsotroples in the ambient medium.

2019 ◽  
Vol 629 ◽  
pp. A147 ◽  
Author(s):  
A.-M. Broomhall ◽  
A. E. L. Thomas ◽  
C. E. Pugh ◽  
J. P. Pye ◽  
S. R. Rosen

Context. Quasi-periodic pulsations (QPPs) are time variations in the energy emission during a flare that are observed on both the Sun and other stars and thus have the potential to link the physics of solar and stellar flares. Aims. We characterise the QPPs detected in an X-ray flare on the solar analogue, EK Draconis, which was observed by XMM-Newton. Methods. We used wavelet and autocorrelation techniques to identify the QPPs in a detrended version of the flare. We also fitted a model to the flare based on an exponential decay combined with a decaying sinusoid. The flare is examined in multiple energy bands. Results. A statistically significant QPP is observed in the X-ray energy band of 0.2–12.0 keV with a periodicity of 76 ± 2 min. When this energy band is split, a statistically significant QPP is observed in the low-energy band (0.2–1.0 keV) with a periodicity of 73 ± 2 min and in the high-energy band (1.0–12.0 keV) with a periodicity of 82 ± 2 min. When fitting a model to the time series the phases of the signals are also found to be significantly different in the two energy bands (with a difference of 1.8 ± 0.2 rad) and the high-energy band is found to lead the low-energy band. Furthermore, the first peak in the cross-correlation between the detrended residuals of the low- and high-energy bands is offset from zero by more than 3σ (4.1 ± 1.3 min). Both energy bands produce statistically significant regions in the wavelet spectrum, whose periods are consistent with those listed above. However, the peaks are broad in both the wavelet and global power spectra, with the wavelet showing evidence for a drift in period with time, and the difference in period obtained is not significant. The offset in the first peak in the cross-correlation of the detrended residuals of two non-congruent energy bands (0.5−1.0 keV and 4.5−12.0 keV) is found to be even larger (10 ± 2 min). However, the signal-to-noise in the higher of these two energy-bands, covering the range 4.5−12.0 keV, is low. Conclusions. The presence of QPPs similar to those observed on the Sun, and other stars, suggests that the physics of flares on this young solar analogue is similar to the physics of solar flares. It is possible that the differences in the QPPs detected in the two energy bands are seen because each band observes a different plasma structure. However, the phase difference, which differs more significantly between the two energy bands than the period, could also be explained in terms of the Neupert effect. This suggests that QPPs are caused by the modulation of the propagation speeds of charged particles.


1983 ◽  
Vol 6 ◽  
pp. 681-687
Author(s):  
W. Kraushaar ◽  
D. Burrows ◽  
D. McCammon ◽  
W. Sanders

AbstractMaps in three energy bands from the recently-completed Wisconsin survey of the soft X-ray sky are presented. The lowest energy data require emission, almost certainly from hot interstellar gas, from regions within 100 pc of the sun. The data do not require diffuse emission from beyond the neutral galactic gas but are compatible with such emission under certain assumptions.


1983 ◽  
Vol 101 ◽  
pp. 385-392
Author(s):  
Donald P. Cox

We observe the heating of interstellar material in young supernova remnants (SNR). In addition, when analyzing the soft X-ray background we find evidence for large isolated regions of apparently hot, low density material. These, we infer, may have been heated by supernovae. One such region seems to surround the Sun. This has been modeled as a supernova remnant viewed from within. The most reasonable parameters are ambient density no ~ 0.004 cm−3, radius of about 100 pc, age just over 105 years (Cox and Anderson 1982).


2019 ◽  
Vol 486 (4) ◽  
pp. 4671-4685 ◽  
Author(s):  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
Yuming Wang ◽  
Zavkiddin Mirtoshev ◽  
Jie Zhang ◽  
...  

ABSTRACT Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycles 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications for the study of solar-type stars.


1998 ◽  
Vol 188 ◽  
pp. 471-472
Author(s):  
K. Ohta ◽  
M. Akiyama ◽  
K. Nakanishi ◽  
T. Yamada ◽  
K. Hayashida ◽  
...  

Since the bulk of the energy density of the Cosmic X-ray Background (CXB) resides in the harder energy band than that of the ROSAT band (0.5-2 keV) and since the X-ray sources identified in the ROSAT band have X-ray spectra softer than that of the CXB, investigation of nature of the X-ray sources at the harder energy band is indispensable to solve the origin of the CXB. However, only 2-3% of the CXB in the hard band (2-10 keV) had been resolved into discrete sources (Piccinotti et al. 1982, ApJ 253, 485). We present our preliminary results of optical follow-up observations of the ASCA Lynx deep survey.


1999 ◽  
Vol 183 ◽  
pp. 200-209
Author(s):  
G. Hasinger

ROSAT deep and shallow surveys have provided an almost complete inventory of the constituents of the soft X-ray background which led to a population synthesis model for the whole X-ray background with interesting cosmological consequences. According to this model the X-ray background is the “echo” of mass accretion onto supermassive black holes, integrated over cosmic time. A new determination of the soft X-ray luminosity function of active galactic nuclei (AGN) is consistent with pure density evolution, and the comoving volume density of AGN at redshift 2–3 approaches that of local normal galaxies. This indicates that many larger galaxies contain black holes and it is likely that the bulk of the black holes was produced before most of the stars in the universe. However, only X-ray surveys in the harder energy bands, where the maximum of the energy density of the X-ray background resides, will provide the acid test of this picture.


2013 ◽  
Vol 9 (S304) ◽  
pp. 125-131
Author(s):  
Yoshihiro Ueda ◽  
Masayuki Akiyama ◽  
Günther Hasinger ◽  
Takamitsu Miyaji ◽  
Michael G. Watson

AbstractX-ray surveys provide us with one of the least biased samples of Active Galactic Nuclei (AGNs) against obscuration. Here we present the most up-to-date AGN X-ray luminosity function (XLF) and absorption function over the redshift range from 0 to 5, using the largest, highly complete sample ever available obtained from surveys of various depth, depth, and energy bands. We utilize a maximum likelihood method to reproduce the count-rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, contribution from Compton-thick AGNs, and AGN broad band X-ray spectra including reflection components from tori based on the luminosity and redshift dependent unified scheme. We find that the shape of the XLF at z ~ 1–3 is significantly different from that in the local universe, for which the luminosity dependent density evolution (LDDE) model gives the best description. These results establish the standard population synthesis model of the X-Ray Background (XRB), which well reproduces the source counts in both soft and hard bands, the observed fractions of Compton-thick AGNs, and the spectrum of the XRB.


2020 ◽  
Vol 495 (3) ◽  
pp. 2664-2672 ◽  
Author(s):  
Amar Deo Chandra ◽  
Jayashree Roy ◽  
P C Agrawal ◽  
Manojendu Choudhury

ABSTRACT We present the timing and spectral studies of RX J0209.6–7427 during its rare 2019 outburst using observations with the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) instruments on the AstroSat satellite. Pulsations having a periodicity of 9.29 s were detected for the first time by the NICER mission in the 0.2–10 keV energy band and, as reported here, by AstroSat over a broad energy band covering 0.3–80 keV. The pulsar exhibits a rapid spin-up during the outburst. Energy resolved folded pulse profiles are generated in several energy bands in 3–80 keV. To the best of our knowledge this is the first report of the timing and spectral characteristics of this Be binary pulsar in hard X-rays. There is suggestion of evolution of the pulse profile with energy. The energy spectrum of the pulsar is determined and from the best-fitting spectral values, the X-ray luminosity of RX J0209.6−7427 is inferred to be 1.6 × 1039 erg s−1. Our timing and spectral studies suggest that this source has features of an ultraluminous X-ray pulsar in the Magellanic Bridge. Details of the results are presented and discussed in terms of the current ideas.


1996 ◽  
Vol 152 ◽  
pp. 289-293
Author(s):  
R.G. West ◽  
R. Willingale ◽  
J.P. Pye ◽  
T.J. Sumner

We present the results of an attempt to locate the signature of the diffuse soft X-ray background in the ROSAT Wide-Field Camera (WFC) all-sky survey. After removal of non-cosmic background sources (eg. energetic charged particles), the field-of-view integrated count rate in the WFC S1a filter (90–185 eV) shows no consistent variation with Galactic latitude or longitude. We place limits on the signal from the soft X-ray background (SXRB) in the WFC, and show that these limits conflict with the observations of the Wisconsin Sky Survey if the SXRB in this energy range is assumed to be produced by a thermal plasma of cosmic abundance and a temperature T ~ 106 K within d ~ 100 pc of the Sun.


2020 ◽  
Vol 637 ◽  
pp. A55
Author(s):  
M. Langejahn ◽  
M. Kadler ◽  
J. Wilms ◽  
E. Litzinger ◽  
M. Kreter ◽  
...  

Context. Hard X-ray properties of beamed active galactic nuclei have been published in the 105-month Swift/BAT catalog, but there have not been any studies carried out so far on a well-defined, radio-selected sample of low-peaked blazars in the hard X-ray band. Aims. Using the statistically complete MOJAVE-1 sample, we aim to determine the hard X-ray properties of radio-selected blazars, including the enigmatic group of gamma-ray-faint blazars. Additionally, we aim to determine the contribution of radio-selected low-peaked blazars to the diffuse cosmic X-ray background (CXB). Methods. We determined photon indices, fluxes, and luminosities in the range of 20 keV–100 keV of the X-ray spectra of blazars and other extragalactic jets from the MOJAVE-1 sample, derived from the 105-month Swift/BAT survey. We calculated log N–log S distributions and determined the luminosity functions. Results. The majority of the MOJAVE-1 blazars are found to be hard X-ray emitters albeit many at low count rates. The log N–log S distribution for the hard X-ray emission of radio-selected blazars is clearly non-Euclidean, in contrast to the radio flux density distribution. Approximately 0.2% of the CXB in the 20 keV–100 keV band can be resolved into MOJAVE-1 blazars. Conclusions. The peculiar log N–log S distribution disparity might be attributed to different evolutionary paths in the X-ray and radio bands, as tested by luminosity-function modeling. X-ray variability can be ruled out as the dominant contributor. Low-peaked blazars constitute an intrinsically different source population in terms of CXB contribution compared to similar studies of X-ray-selected blazars. The hard X-ray flux and spectral index can serve as a good proxy for the gamma-ray detection probability of individual sources. Future observations combining deep X-ray survey, for example, with eROSITA, and targeted gamma-ray observations with CTA can benefit strongly from the tight connection between these high-energy bands for the different blazar sub-classes.


Sign in / Sign up

Export Citation Format

Share Document