scholarly journals Some numerical experiments on firn ventilation with heat transfer

1993 ◽  
Vol 18 ◽  
pp. 161-165 ◽  
Author(s):  
M.R. Albert

Preliminary estimates of the thermal signature of ventilation in polar firn are obtained from two-dimensional numerical calculations. The simulations show that spatially varying surface pressure can induce airflow velocities of 10−5m s−1at 1.5 m depth in uniform firn, and higher velocities closer to the surface. The two-dimensional heat-transfer results generally agree with our earlier one-dimensional conclusions that the thermal effects of ventilation tend to decrease the temperature gradient in the top portions of the pack. Field observations of ventilation through temperature measurements are most likely to be observed when the firn temperature at depths on the order of 10 m is close to the air temperature, since steep temperature gradients can mask the thermal effects of ventilation. Preliminary indications are that, as long as surface-pressure amplitude is sufficient to move the air about in the top tens of centimeters in the snow, the resulting temperature profile during ventilation is fairly insensitive to the frequency of the surface-pressure forcing for pressure frequencies in the range 0.1–10.0 Hz.

1993 ◽  
Vol 18 ◽  
pp. 161-165 ◽  
Author(s):  
M.R. Albert

Preliminary estimates of the thermal signature of ventilation in polar firn are obtained from two-dimensional numerical calculations. The simulations show that spatially varying surface pressure can induce airflow velocities of 10−5 m s−1 at 1.5 m depth in uniform firn, and higher velocities closer to the surface. The two-dimensional heat-transfer results generally agree with our earlier one-dimensional conclusions that the thermal effects of ventilation tend to decrease the temperature gradient in the top portions of the pack. Field observations of ventilation through temperature measurements are most likely to be observed when the firn temperature at depths on the order of 10 m is close to the air temperature, since steep temperature gradients can mask the thermal effects of ventilation. Preliminary indications are that, as long as surface-pressure amplitude is sufficient to move the air about in the top tens of centimeters in the snow, the resulting temperature profile during ventilation is fairly insensitive to the frequency of the surface-pressure forcing for pressure frequencies in the range 0.1–10.0 Hz.


Author(s):  
Tomohiko Yamaguchi ◽  
Kuniyasu Kanemaru ◽  
Satoru Momoki ◽  
Toru Shigechi ◽  
Ryo Fujiwara

The solid-gas or liquid-gas two phase flow has many industrial applications such as spray drying, pollution control, transport systems, fluidized beds, energy conversion and propulsion, material processing, and so on. Though the solid-gas multiphase flow has been studied experimentally and numerically, the transport phenomena have not been cleared due to its complexity, computational time and economical costs for the hardware. In this study the heat and mass transfer of solid-gas collision dominated flow is analyzed by the Discrete Particle Simulation (DPS), a kind of the Dispersed Element Method (DEM)[1]. This method describes the discrete phase and the continuous phase by Lagrange and Euler methods respectively, and has been used to simulate the multiphase flow of various geometrical systems. In order to analyze the thermal field we took account of the energy equation and heat conduction between colliding particles. The heat transfer rate is summation of conductive heat transfer and convective heat transfer. Furthermore, the fluid flow has a two dimensional velocity profile, because the void fractions are analyzed as two dimensions. But momentum space has not been resolved by the two dimensional simulation. We call this method, the quasi two-dimensional simulation in this paper. To obtain the temperature distribution of the continuous phase the energy equation is solved in addition to the momentum equations. We treated the interaction between continuous and discrete phases as one and two way couplings. The positions, the momentum and the temperature information of particles and the velocity and the temperature distribution of the fluid were obtained as functions of time from results of these numerical simulations. When the hot air that is suspending small glass particles flows in a duct from bottom up, we traced the particles and got the temperature distribution of fluid and compared with the former results of one-dimensional flow. At the beginning, the cooler particles decrease the fluid temperature near the bottom of the vessel. The temperature profile of the particles obtained by the one-dimensional simulation is as same as quasi two-dimensional simulation. After 0.5 second the particles cool the downstream air. At 1.2 second, particles do not decrease the air temperature because the temperatures of particles are close to the inlet temperature of the air.


1983 ◽  
Vol 105 (4) ◽  
pp. 889-894 ◽  
Author(s):  
T. Yazaki ◽  
A. Tominaga ◽  
Y. Narahara

This paper describes experimental studies of heat transfer due to the oscillations of gas columns that are spontaneously induced in a tube with steep temperature gradients. The tube (∼3 m in length) is closed at both ends and bent into U-shaped form at the midpoint. The temperature distribution along the tube is step-functional and symmetrical with respect to the midpoint. The warm part (closed-end sides) is maintained at room temperature and the cold one is immersed in liquid helium (4.2 K). The heat transported from the warm part to the cold is estimated from the evaporation rate of liquid helium. The heat flux by the oscillations is proportional to the square of the pressure amplitude, and the effective heat conductivity can be several orders of magnitude larger than the molecular heat conductivity of gas. The experimental results are compared with the theory of the second-order heat flux proposed by Rott and are found to be in satisfactory agreement with this.


2021 ◽  
Author(s):  
Yu Chen ◽  
Jihong Chen ◽  
guangda xu

Abstract Thermal error is a common problem in machine tool processing. It is usually proposed to take the screw as one-dimensional rod heat transfer system to solve the thermal error of screw by establishing thermal characteristic equation. This method regards the temperature on the nut as the temperature of the screw contact surface without considering the heat transfer distance between screw and the mounting point on the nut. To solve this problem, this paper takes the screw-nut feed system as a two-dimensional heat transfer structure considering both screw and nut. In addition, to solve the low convergence speed and easy fall into local optimum problem in optimal parameter identification. The improved particle swarm optimization algorithm (IPSOA) is proposed to identify the boundary parameters of thermal characteristics equations. Finally, the temperature and thermal error of the screw-nut feed system is calculated by the identified results. Experiments under different working condition show that the maximum prediction residual error of the two-dimensional method (TDM) is less than 7.2 um and the simulating prediction accuracy can reach 86.2%. Besides, compared with one-dimensional model (ODM), TDM has a higher predict accuracy which verifies the effectiveness of the proposed method.


2000 ◽  
Author(s):  
Bengt Sundén ◽  
Andreas Abdon ◽  
Daniel Eriksson

Abstract The performance of a radiator copper fin is considered as the braze joint between the fin and the brass tube is not perfect. The influence of different thermophysical properties of the brazing materials, created intermetallic compounds and possible air gaps is considered. Numerical methods for both two-dimensional and one-dimensional calculations have been developed. The finite volume technique is applied and in the two-dimensional case, boundary fitted coordinates are used. Heat conduction in the fin and braze joint coupled with convective heat transfer in a gas stream is analysed. Results in terms of fin temperature distributions and fin efficiencies are provided. It is found that the detrimental effect of a poor braze joint is not as large as reported previously in the literature.


1976 ◽  
Vol 98 (3) ◽  
pp. 407-413 ◽  
Author(s):  
S. S. Dua ◽  
C. L. Tien

This paper presents a two-dimensional analysis of the effect of precursory cooling on conduction-controlled rewetting of a vertical surface, whose initial temperature is higher than the sputtering temperature. Precursory cooling refers to the cooling caused by the droplet-vapor mixture in the region immediately ahead of the wet front, and is described mathematically by two dimensionless constants which characterize its magnitude and the region of influence. The physical model developed to account for precursory cooling consists of an infinitely extended vertical surface with the dry region ahead of the wet front characterized by an exponentially decaying heat flux and the wet region behind the moving film-front associated with a constant heat transfer coefficient. Apart from the two dimensionless constants describing the extent of precursory cooling, the physical problem is characterized by three dimensionless groups: the Peclet number or the dimensionless wetting velocity, the Biot number and a dimensionless temperature. Limiting solutions for large and small Peclet numbers have been obtained utilizing the Wiener-Hopf technique coupled with appropriate kernel substitutions. A semiempirical matching relation is then devised for the entire range of Peclet numbers. Existing experimental data with variable flow rates at atmospheric pressure are very closely correlated by the present model. Finally a comparison is drawn between the one-dimensional limit of the present analysis and the corresponding one-dimensional solution obtained by treating the dry region ahead of the wet front characterized by an exponentially decaying heat transfer coefficient.


1992 ◽  
Vol 114 (3) ◽  
pp. 548-552 ◽  
Author(s):  
J. M. Houghton ◽  
D. B. Ingham ◽  
P. J. Heggs

Studies of the transient heat transfer within extended surfaces have so far considered the fins in isolation. The isolated fin model is not representative of the physical boundary conditions within an extended surface heat exchanger since it does not account for the thermal effects of the supporting interface. The aim of this study is to extend the work on transient heat transfer within finned surfaces by incorporating the supporting wall in the problem. A mathematical one-dimensional solution for harmonic oscillatory heat transfer in a fin assembly is derived. It is concluded that, unlike steady-state situations, the transient heat transfer in a fin assembly can only be found by considering both the wall and the fins simultaneously.


1967 ◽  
Vol 27 (1) ◽  
pp. 97-109 ◽  
Author(s):  
D. B. Spalding

A power-law relation is derived between the Stanton number and the Reynolds number, expressing the law of heat transfer for a wall adjacent to a region of turbulent separated flow. The derivation is based on Prandtl's (1945) proposal for the laws of dissipation, diffusion and generation of turbulent kinetic energy. The constants appearing in these laws are determined by reference to experimental data for the hydrodynamic properties of the constant-stress and the linear-stress layers.The agreement between the resulting predictions and the experimental data of other workers is sufficiently good to suggest that the actual mechanism of heat transfer from separated flows has much in common with that which is postulated. Closer agreement can be expected only after the present one-dimensional analysis has been superseded by a two-dimensional one.


2020 ◽  
Vol 37 (8) ◽  
pp. 2913-2938
Author(s):  
Rajul Garg ◽  
Harishchandra Thakur ◽  
Brajesh Tripathi

Purpose The study aims to highlight the behaviour of one-dimensional and two-dimensional fin models under the natural room conditions, considering the different values of dimensionless Biot number (Bi). The effect of convection and radiation on the heat transfer process has also been demonstrated using the meshless local Petrov–Galerkin (MLPG) approach. Design/methodology/approach It is true that MLPG method is time-consuming and expensive in terms of man-hours, as it is in the developing stage, but with the advent of computationally fast new-generation computers, there is a big possibility of the development of MLPG software, which will not only reduce the computational time and cost but also enhance the accuracy and precision in the results. Bi values of 0.01 and 0.10 have been taken for the experimental investigation of one-dimensional and two-dimensional rectangular fin models. The numerical simulation results obtained by the analytical method, benchmark numerical method and the MLPG method for both the models have been compared with that of the experimental investigation results for validation and found to be in good agreement. Performance of the fin has also been demonstrated. Findings The experimental and numerical investigations have been conducted for one-dimensional and two-dimensional linear and nonlinear fin models of rectangular shape. MLPG is used as a potential numerical method. Effect of radiation is also, implemented successfully. Results are found to be in good agreement with analytical solution, when one-dimensional steady problem is solved; however, two-dimensional results obtained by the MLPG method are compared with that of the finite element method and found that the proposed method is as accurate as the established method. It is also found that for higher Bi, the one-dimensional model is not appropriate, as it does not demonstrate the appreciated error; hence, a two-dimensional model is required to predict the performance of a fin. Radiative fin illustrates more heat transfer than the pure convective fin. The performance parameters show that as the Bi increases, the performance of fin decreases because of high thermal resistance. Research limitations/implications Though, best of the efforts have been put to showcase the behaviour of one-dimensional and two-dimensional fins under nonlinear conditions, at different Bi values, yet lot more is to be demonstrated. Nonlinearity, in the present paper, is exhibited by using the thermal and material properties as the function of temperature, but can be further demonstrated with their dependency on the area. Additionally, this paper can be made more elaborative by extending the research for transient problems, with different fin profiles. Natural convection model is adopted in the present study but it can also be studied by using forced convection model. Practical implications Fins are the most commonly used medium to enhance heat transfer from a hot primary surface. Heat transfer in its natural condition is nonlinear and hence been demonstrated. The outcome is practically viable, as it is applicable at large to the broad areas like automobile, aerospace and electronic and electrical devices. Originality/value As per the literature survey, lot of work has been done on fins using different numerical methods; but to the best of authors’ knowledge, this study is first in the area of nonlinear heat transfer of fins using dimensionless Bi by the truly meshfree MLPG method.


2004 ◽  
Vol 126 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Debjit Mukerji ◽  
John K. Eaton ◽  
Robert J. Moffat

Steady-state experiments with one-dimensional and two-dimensional calorimeters were used to study the convective heat transfer near sharp steps in wall temperature in a turbulent boundary layer. Data acquired under low and high freestream turbulence conditions indicated that spanwise turbulent diffusion is not a significant heat transport mechanism for a two-dimensional temperature step. The one-dimensional calorimeter heat transfer data were predicted within ±5 percent using the STAN7 boundary layer code for situations with an abrupt wall temperature step. The conventional correlation with an unheated starting length correction, in contrast, greatly under-predicts the heat transfer for the same experimental cases. A new correlation was developed that is in good agreement with near and far-field semi-analytical solutions and predicts the calorimeter heat transfer data to within ±2 percent for temperature step boundary condition cases.


Sign in / Sign up

Export Citation Format

Share Document