Design of robots driven by linear servo systems

Robotica ◽  
1992 ◽  
Vol 10 (4) ◽  
pp. 361-368 ◽  
Author(s):  
P. Minotti ◽  
P. Pracht

SUMMARYThe performance of robotic manipulators is limited by the nature of the control systems which do not satisfactorily integrate the non-linear phenomena associated with the dynamic behavior of the mechanisms. The significant variations in the axial inertias lead to control problems and require an optimization of the mechanical structures in order to improve the stability of the manipulators. This paper proposes mechanical solutions in the domain of dynamic decoupling of robots and demonstrates, using numerical simulations the value of these solutions in terms of control.

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Sutrima Sutrima ◽  
Christiana Rini Indrati ◽  
Lina Aryati

In the theory control systems, there are many various qualitative control problems that can be considered. In our previous work, we have analyzed the approximate controllability and observability of the nonautonomous Riesz-spectral systems including the nonautonomous Sturm-Liouville systems. As a continuation of the work, we are concerned with the analysis of stability, stabilizability, detectability, exact null controllability, and complete stabilizability of linear non-autonomous control systems in Banach spaces. The used analysis is a quasisemigroup approach. In this paper, the stability is identified by uniform exponential stability of the associated C0-quasisemigroup. The results show that, in the linear nonautonomous control systems, there are equivalences among internal stability, stabizability, detectability, and input-output stability. Moreover, in the systems, exact null controllability implies complete stabilizability.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Chunming Zhang ◽  
Yun Zhao ◽  
Yingjiang Wu ◽  
Shuwen Deng

A stochastic computer virus spread model is proposed and its dynamic behavior is fully investigated. Specifically, we prove the existence and uniqueness of positive solutions, and the stability of the virus-free equilibrium and viral equilibrium by constructing Lyapunov functions and applying Ito's formula. Some numerical simulations are finally given to illustrate our main results.


Robotica ◽  
1993 ◽  
Vol 11 (5) ◽  
pp. 465-473 ◽  
Author(s):  
S. Khemaissia ◽  
A.S. Morris

SUMMARYThe need to meet demanding control requirements in increasingly complex dynamical control systems under significant uncertainties makes neural networks very attractive, because of their ability to learn, to approximate functions, to classify patterns and because of their potential for massively parallel hardware implementation. This paper proposes the use of artificial neural networks (ANN) as a novel approach to the control of robot manipulators. These are part of the general class of non-linear dynamic systems where non-linear compensators are required in the controller.


Author(s):  
D. J. N. Limebeer ◽  
R. S. Sharp ◽  
S Evangelou

A comprehensive study of the effects of acceleration and braking on motorcycle stability is presented. This work is based on a modified version of a dynamic model presented earlier, and is thought to be the most comprehensive motorcycle dynamic model in the public domain. Extensive use is made of both non-linear and linearized models. The models are written in LISP and make use of the multibody modelling package AUTOSIM. There is novelty in the way in which control systems have been used to control the motorcycle drive and braking systems in order that the machine maintains desired rates of acceleration and deceleration. The results show that the wobble mode of a motorcycle is significantly destabilized when the machine is descending an incline or braking on a level surface. Conversely, the damping of the wobble mode is substantially increased when the machine is ascending an incline at constant speed, or accelerating on a level surface. This probably accounts for the pleasingly stable ‘feel’ of the machine under firm acceleration. Except at very low speeds, inclines, acceleration and deceleration appear to have little effect on the damping or frequency of the weave mode. Non-linear simulations have quantified the known difficulties to do with rear tyre adhesion in heavy braking situations that are dominated by rear wheel braking.


Author(s):  
J. L. Palacios ◽  
J. M. Balthazar ◽  
R. M. L. R. F. Brasil ◽  
J. Warminski

In this work, the dynamic behavior of self-synchronization and synchronization through mechanical interactions between the nonlinear self-excited oscillating system and two non-ideal sources are examined by numerical simulations. The physical model of the system vibrating consists of a non-linear spring of Duffing type and a nonlinear damping described by Rayleigh’s term. This system is additional forced by two unbalanced identical direct current motors with limited power (non-ideal excitations). The present work mathematically implements the parametric excitation described by two periodically changing stiffness of Mathieu type that are switched on/off.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ningning Yang ◽  
Cheng Xu ◽  
Chaojun Wu ◽  
Rong Jia ◽  
Chongxin Liu

This paper proposed a novel fractional-order memristor-based chaotic circuit. A memristive diode bridge cascaded with a fractional-order RL filter constitutes the generalized fractional-order memristor. The mathematical model of the proposed fractional-order chaotic circuit is established by extending the nonlinear capacitor and inductor in the memristive chaotic circuit to the fractional order. Detailed theoretical analysis and numerical simulations are carried out on the dynamic behavior of the proposed circuit by investigating the stability of equilibrium points and the influence of circuit parameters on bifurcations. The results show that the order of the fractional-order circuit has a great influence on the dynamical behavior of the system. The system may exhibit complicated nonlinear dynamic behavior such as bifurcation and chaos with the change of the order. The equivalent circuits of the fractional-order inductor and capacitor are also given in the paper, and the parameters of the equivalent circuits are solved by an undetermined coefficient method. Circuit simulations of the equivalent fractional-order memristive chaotic circuit are carried out in order to validate the correctness of numerical simulations and the practicability of using the integer-order equivalent circuit to substitute the fractional-order element.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2218
Author(s):  
Isaac S. Leal ◽  
Chamil Abeykoon ◽  
Yasith S. Perera

Unmanned aerial vehicles or drones are becoming one of the key machines/tools of the modern world, particularly in military applications. Numerous research works are underway to explore the possibility of using these machines in other applications such as parcel delivery, construction work, hurricane hunting, 3D mapping, protecting wildlife, agricultural activities, search and rescue, etc. Since these machines are unmanned vehicles, their functionality is completely dependent upon the performance of their control system. This paper presents a comprehensive approach for dynamic modeling, control system design, simulation and optimization of a quadcopter. The main objective is to study the behavior of different controllers when the model is working under linear and/or non-linear conditions, and therefore, to define the possible limitations of the controllers. Five different control systems are proposed to improve the control performance, mainly the stability of the system. Additionally, a path simulator was also developed with the intention of describing the vehicle’s movements and hence to detect faults intuitively. The proposed PID and Fuzzy-PD control systems showed promising responses to the tests carried out. The results indicated the limits of the PID controller over non-linear conditions and the effectiveness of the controllers was enhanced by the implementation of a genetic algorithm to autotune the controllers in order to adapt to changing conditions.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


Sign in / Sign up

Export Citation Format

Share Document