Design and control of a three degree of freedom pneumatic physiotherapy robot

Robotica ◽  
2003 ◽  
Vol 21 (6) ◽  
pp. 589-604 ◽  
Author(s):  
R. Richardson ◽  
M. Brown ◽  
B. Bhakta ◽  
M.C. Levesley

Stroke is a common condition resulting in 30,000 people per annum left with significant disability. In patients with severe arm paresis after stroke, functional recovery in the affected arm is poor. Inadequate intensity of treatment is cited as one factor accounting for the lack of arm recovery found in some studies. Given that physical therapy resource is limited, strategies to enhance the physiotherapists' efforts are needed. One approach is to use robotic techniques to augment movement therapy.A three degree-of-freedom pneumatic robot has been developed to apply physiotherapy to the upper limb. The robot has been designed with a workspace encompassing the reach-retrieve range of the average male. Control experiments have applied force and then position only controllers to the pneumatic robot. These controllers are combined to form a position-based impedance control strategy on all degrees of freedom of the robot. The impedance controller performance was found to be dependent upon the specified impedance parameters. Initial experiments attaching the device to human subjects have indicated great potential for the device.

Author(s):  
Kevin B. Fite ◽  
Michael Goldfarb

This paper presents an architecture and control methodology for a multi-degree-of-freedom teleoperator system. The approach incorporates impedance control of the telemanipulator pair and formulates the system as a single feedback loop encompassing the human operator, telemanipulator, and remote environment. In so doing, multivariable Nyquist-like techniques are used to design compensation for enhanced stability robustness and performance. A measure of the transparency exhibited by the multivariable teleoperator system is attained using matrix singular values. The approach is experimentally demonstrated on a three degree-of-freedom scaled telemanipulator pair with a highly coupled environment. Using direct measurement of the power delivered to the operator to assess the system’s stability robustness, along with the proposed measure of multivariable transparency, the loop-shaping compensation is shown to improve the stability robustness by a factor of almost two and the transparency by more than a factor of five.


1966 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Leonard Segel

Measurements of the directional response of an automobile to torque inputs applied at the steering wheel are compared with predictions yielded by a five-degree-of-freedom model of a four-wheeled, pneumatic-tired vehicle. This comparison demonstrates that the directional control and stability of the “free-control” automobile is satisfactorily characterized by the addition of a quasilinear representation of a steering system (i.e., a mechanism having two degrees of freedom with Coulomb friction introduced as the single nonlinear element) to a linear three-degree-of-freedom representation of the “fixed-control” automobile. Use is made of the experimentally substantiated five-degree-of-freedom mathematical model to study the relationship between automotive design parameters and the response and stability in each of the four natural modes of motion that exist for the free-control vehicle.


2012 ◽  
Vol 619 ◽  
pp. 325-328
Author(s):  
You Jun Huang ◽  
Ze Lun Li ◽  
Zhi Cheng Huang

A teaching robot with three degree of freedom is designed. The three degrees of freedom are: waist rotation, lifting and stretching of the arm and opening and closing of the gripper. The designs of the main components are: a mobile chassis, parallel rails, horizontal rails and manipulator. The teaching robot designed has the features of low cost, easy to regulation, good repeatability and it has good promotion and application prospects in the field of teaching.


1999 ◽  
Vol 36 (03) ◽  
pp. 157-170
Author(s):  
Jerrold N. Sgobbo ◽  
Michael G. Parsons

The U.S. Coast Guard's 270-ft Medium Endurance Cutter (WMEC) operates with an active fin stabilization system. This system was designed using a one-degree-of-freedom (1-DOF) model in the roll direction. The controller was designed separate from the heading autopilot. The effects of the rudders and their ability to produce a significant rolling moment were also neglected as well as the cross coupling of roll motions into other degrees of freedom. This paper studies the effects of the rudders on the rolling motion of the ship using a three-degree-of-freedom (3-DOF) model. A simple optimal heading autopilot is designed and combined with the existing fin roll controller to investigate the effects of the rudders on the roll motions of this class of vessel. A rudder roll controller and a multiple input-multiple output (MIMO) rudder/fin controller are designed as well. Significant roll reduction can be achieved using the MIMO rudder/fin controller.


2016 ◽  
Vol 45 (9) ◽  
pp. 0918003
Author(s):  
王施相 Wang Shixiang ◽  
郭 劲 Guo Jin ◽  
甘新基 Gan Xinji ◽  
王挺峰 Wang Tingfeng

2016 ◽  
Vol 45 (9) ◽  
pp. 918003
Author(s):  
王施相 Wang Shixiang ◽  
郭 劲 Guo Jin ◽  
甘新基 Gan Xinji ◽  
王挺峰 Wang Tingfeng

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Riccardo Bevilacqua ◽  
Marcello Romano ◽  
Fabio Curti ◽  
Andrew P. Caprari ◽  
Veronica Pellegrini

This work introduces theoretical developments and experimental verification for Guidance, Navigation, and Control of autonomous multiple spacecraft assembly. We here address the in-plane orbital assembly case, where two translational and one rotational degrees of freedom are considered. Each spacecraft involved in the assembly is both chaser and target at the same time. The guidance and control strategies are LQR-based, designed to take into account the evolving shape and mass properties of the assembling spacecraft. Each spacecraft runs symmetric algorithms. The relative navigation is based on augmenting the target's state vector by introducing, as extra state components, the target's control inputs. By using the proposed navigation method, a chaser spacecraft can estimate the relative position, the attitude and the control inputs of a target spacecraft, flying in its proximity. The proposed approaches are successfully validated via hardware-in-the-loop experimentation, using four autonomous three-degree-of-freedom robotic spacecraft simulators, floating on a flat floor.


Sign in / Sign up

Export Citation Format

Share Document