Techniques for vibration control of a flexible robot manipulator

Robotica ◽  
2006 ◽  
Vol 24 (4) ◽  
pp. 499-511 ◽  
Author(s):  
Z. Mohamed ◽  
A. K. Chee ◽  
A. W. I. Mohd Hashim ◽  
M. O. Tokhi ◽  
S. H. M. Amin ◽  
...  

This paper presents investigations into the applications and performance of positive and negative input shapers in command shaping techniques for the vibration control of a flexible robot manipulator. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the finite element method. An unshaped bang-bang torque input is used to determine the characteristic parameters of the system for design and evaluation of the input shaping control techniques. The positive and specified amplitude negative input shapers are designed based on the properties of the system. Simulation results of the response of the manipulator to the shaped inputs are presented in the time and frequency domains. Performances of the shapers are examined in terms of level of vibration reduction, time response specifications and robustness to parameters uncertainty. The effects of derivative order of the input shaper on the performance of the system are investigated. Finally, a comparative assessment of the impact amplitude polarities of the input shapers on the system performance is presented and discussed.

Author(s):  
Zhang Xianmin ◽  
Song Li ◽  
Liu Jike

Abstract In this paper, a mathematical model for flexible robot manipulators with smart links featuring piezoelectric films is developed in conjunction with the finite element method. The dynamics of piezoelectric actuators and strain gage sensors bonded on the flexible links are presented for beam model. Theory and measures of active vibration control for flexible manipulators are studied based on the modal and modern control theory, and the correspondent optimal control scheme is proposed. The robust control low is formulated based on the modified independent modal control method and the Linear Quadratic theory. The computational method for the actual control moments and the control voltages are also presented.


Author(s):  
Yue-Qing Yu ◽  
Ji-Yun Yang

The dynamics and motion control of flexible robot manipulators is an advanced topic in the study of robotics. The precise tracking of the end-effector trajectory of flexible robots can be improved by the self-motion of redundant manipulators. The flexible manipulator with single-degree of kinematic redundancy has been considered only at present. This study addresses on the dynamics and motion control of flexible robots with multi-degree of kinematic redundancy. Compared with the robot with one-degree of redundancy, the optimal motion programming of a flexible robot manipulator with two-degree of redundancy has been obtained successfully based on pseudo-inverse solution. The numerical results of planar three-link and four-link flexible manipulators show the advantage of multi-degree of redundancy in improving the kinematic and dynamic performances of flexible robot manipulators.


2011 ◽  
Vol 66-68 ◽  
pp. 1142-1148 ◽  
Author(s):  
Jun Qiang Lou ◽  
Yan Ding Wei

The dynamic analysis and control of flexible robot manipulators have been the main concerns of many recent studies in aeronautics and robotics. Moreover, the complexity of this problem increases when a flexible manipulator carries a payload. In this paper, we proposed a space two-link flexible manipulator with tip payload featuring surface-bonded piezoelectric torsional actuator and shear actuator. The equations of motion for the system are obtained using Hamilton’s principle. A Lyapunov-based controller is proposed to suppress the vibration of the system. Stability of the system is also investigated. The simulation results demonstrate the proposed control strategy is well suited for active control of vibration suppression on flexible manipulators.


2014 ◽  
Vol 67 (5) ◽  
Author(s):  
M. H. I. Ishak ◽  
Z. Mohamed ◽  
R. Mamat

This paper presents investigations into the applications and performance of command shaping techniques for control of payload sway of a boom crane based on filtering and the input shaping technique. The mathematical dynamic model describing the motion of the boom crane is developed using the Lagrange-Euler's equation. The dynamic characteristics of the system are studied and analysed using the Matlab Simulink in time and frequency domains. Command shaping techniques based on filtering and the input shaping techniques are then developed and used to control the payload sway of the boom crane. The performance of the control techniques are studied in terms of the level of sway reduction, time response and robustness. Finally, a comparative assessment of the effectiveness of the control schemes for sway control of a boom crane is presented and discussed.


Author(s):  
J. Justin Wilbanks ◽  
Michael J. Leamy

This paper analyzes the robustness of a two-scale command shaping strategy for reducing vibrations in hybrid electric vehicle (HEV) powertrains during engine restart. Propagation of HEVs through the automobile market depends on their perceived quality and performance. In this work, a two-scale command shaping strategy addresses the drivability of the vehicle by focusing on the reduction of noise, vibration, and harshness (NVH) issues associated with restarting the internal combustion engine (ICE) during a mode transition. The strategy tailors the electric machine (EM) torque profile, which consists of a linear and time-varying component, to significantly mitigate the powertrain and chassis vibrations for a smoother ICE startup. The time-varying EM torque component is calculated by applying a perturbation technique for separating the scales of an analytical ICE model, which isolates the ICE nonlinear response. Command shaping is then applied to the linear problem governed by the remaining scale. Simulations confirm that the two-scale command shaping strategy is a straightforward technique for reducing powertrain and chassis vibrations during ICE restart. In real-time implementation, inaccuracies or variations in system parameters and initial conditions arising from the operating condition or from general wear during a vehicle’s life cycle will occur. Therefore, successful implementation of the two-scale command shaping strategy relies upon the robustness of the perturbation technique and command shaping to these variations. This paper validates the perturbation technique’s robustness to variations in the ICE parameters and initial conditions. Robust command shaping methods are also explored to decrease the impact of system parameter variations on the efficacy of command shaping. Improving the overall robustness of the two-scale command shaping strategy will increase the applicability to consumer HEVs by ensuring its performance under variations in system parameters.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141666279
Author(s):  
Jin-yong Ju ◽  
Wei Li ◽  
Xue-Feng Yang ◽  
Yu-Qiao Wang ◽  
Yu-Fei Liu

The nonstationary transition status of the motor start-up phase creates great threat against the stable operation of the flexible manipulator system. This article investigates the electromechanical coupling dynamics and vibration response characteristics for a flexible manipulator of an alternating current servomotor-driven linear positioning platform with considering the start-up dynamic characteristics of the motor. Based on the constructed global electromechanical coupling effect and the Lagrange–Maxwell equations, the dynamic model of the whole system is established. The electromechanical coupling vibration mechanism of the flexible manipulator is obtained by analyzing the multiphysical process and multiparameter coupling phenomenon of the whole system. The result demonstrates that the nonstationary transition status of the motor initialization phase is mainly manifested during the disturbance of the three-phase stator current. As the speed of the linear positioning platform increases, the current disturbance, arousing the change of the servo driving force of the linear positioning platform, has dominant frequency shift and frequency amplitude decrease. Then, the vibration response of the flexible manipulator is markedly affected and the variation of the high-order modes vibration response is more obvious. The analysis result is significant for improving the dynamic performance of the motor-driven flexible robot manipulator system.


2022 ◽  
Author(s):  
zhi xiao ◽  
Wenhui Zhang

Abstract RP(Rotation-Parallel) flexible robot as a typical electromechanical system. The complex electromechanical coupling effect in the system has a significant impact on the dynamic characteristics and stability of the flexible manipulator. This article investigates the electromechanical coupling dynamics and vibration response characteristics of flexible robot manipulator driven by AC(Alternating Current) servo motor with considering the start-up dynamic characteristics of the motor. Firstly, the physical model including the coupling of electromagnetic and mechanical system is established, and the dynamic model of the whole system is derived based on the global electromechanical coupling effect and Lagrange-Maxwell equations. Secondly, the virtual simulation platform is constructed with the help of MATLAB/Simulink, and the output speed characteristics of the motor drive end and the motion of the moving base are analyzed. Finally, through the joint simulation of MATLAB/Simulink dynamic simulation model and ADAMS/Controls virtual prototype model, the vibration characteristics of flexible manipulator under electromechanical coupling are obtained. The result demonstrates that the electromechanical coupling effect at the motor driving end has an obvious influence on the dynamic characteristics of the flexible manipulator, which is manifested in the increase of the vibration displacement amplitude of the flexible manipulator. With the increase of motor speed, the change of elastic vibration of flexible manipulator becomes larger, which shows that the electromechanical coupling effect of motor driving end has a greater impact on the dynamic characteristics of flexible manipulator at high speed. The analysis results are of great significance to improve the dynamic performance of motor-driven flexible robot manipulator.


Sign in / Sign up

Export Citation Format

Share Document