Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks

Author(s):  
Ian S. Williams

ABSTRACTIn situ, microscale, U-Pb isotopic analyses of zircon using the SHRIMP ion microprobe demonstrate both the potential and the limitations of zircon U-Pb geochronology. Most zircons, whether from igneous or metamorphic rocks, need to be considered as mixed isotopic systems. In simple, young igneous rocks the mixing is principally between isotopically disturbed and undisturbed zircon. In polymetamorphic rocks, several generations of zircon growth can coexist, each with a different pattern of discordance. A similar situation exists for igneous rocks rich in inherited zircon, as these contain both melt-precipitated zircon and inherited components of several different ages. Microscale analysis by ion probe makes it possible to sample the record of provenance, age and metamorphic history commonly preserved within a single zircon population. It also indicates how the interpretation of conventionallymeasured bulk zircon isotopic compositions might be improved.

1980 ◽  
Vol 117 (6) ◽  
pp. 547-563 ◽  
Author(s):  
R. E. Swarbrick ◽  
A. H. F. Robertson

SummaryRecent resurgence of interest in the Mesozoic rocks of SW and southern Cyprus necessitates redefinition of the Mesozoic sedimentary and igneous rocks in line with modern stratigraphical convention. Two fundamentally different rocks associations are present, the Troodos Complex, not redefined, a portion of late Cretaceous oceanic crust, and the Mamonia Complex, the tectonically dismembered remnants of a Mesozoic continental margin. Based on earlier work, the Mamonia Complex is divided into two groups, each subdivided into a number of subsidiary formations and members. The Ayios Photios Group is wholly sedimentary, and records the evolution of a late Triassic to Cretaceous inactive continental margin. The Dhiarizos Group represents Triassic alkalic volcanism and sedimentation adjacent to a continental margin. Several other formations not included in the two groups comprise sedimentary mélange and metamorphic rocks. The Troodos Complex possesses an in situ late Cretaceous sedimentary cover which includes two formations of ferromanganiferous pelagic sediments, radiolarites and volcaniclastic sandstones. The overlying Cainozoic calcareous units are not redefined here.


2021 ◽  
Author(s):  
Margot Patry ◽  
Iwona Klonowska ◽  
Karolina Kośmińska ◽  
Jarosław Majka

<p>The Isbjørnhamna Group, which crops out in the south-west of Svalbard in the High Arctic, is crucial for understanding Svalbard’s regional geology. It can be traced in southern Wedel Jarlsberg Land and Sørkapp Land, and it consists of a Barrovian-type series of metapelites that were metamorphosed during the Torellian (c. 640Ma; Majka et al. 2008) and overprinted during the Caledonian orogenesis (Majka & Kośmińska, 2017). Although relatively recent petrological study exists, there are certain gaps in it. In order to fill these gaps, we decided to re-investigate these rocks using the most up-to-date petrochronological approach. Hence, we aim to determine the metamorphic history of these rocks in detail, test the hypothesis if there are indeed several orogenic events registered by these rocks and what was a possible exhumation mechanism responsible for uplift of this sequence.</p><p>The studied garnet-bearing mica schists preserve four different parageneses, ranging from chloritoid to kyanite metamorphic zones. Here we report on the samples containing chlorite and chloritoid, kyanite, staurolite and both staurolite and kyanite. The studied samples are the same exact rocks that have been previously studied by Majka et al. (2008, 2010) using both geothermobarometry and petrogenetic grids in the KFMASH system. According to those authors the estimated pressure-temperature conditions (P-T) were c. 655°C at 11kbar for the kyanite-bearing shist, c. 624°C at 6.6 to 8.7kbar for the staurolite + kyanite pelite and c. 580°C at 8-9kbar for the staurolite-bearing rock. The chloritoid schist has not been studied previously.</p><p>Our preliminary phase equilibrium modelling in the MnNCKFMASHTO system using the Theriak-Domino software indicates P-T conditions of c. 660°C at 7 kbar for the kyanite-schist and c. 575°C at 8 to 9.5kbar for the staurolite-schist, respectively. The chloritoid schist yielded conditions of c. 560°C at 7.5kbar. Further P-T modelling coupled with in-situ Ar-Ar and U-Pb geochronology should allow for much better understanding of the complex geological history of these rocks as well as potential flaws in the previous studies.</p><p> </p><p>Research funded by National Science Centre (Poland) project no. 2019/33/B/ST10/01728.</p><p> </p><p>References:</p><p>Majka & Kośmińska (2017): Arktos, 3:5, 1.17.</p><p>Majka et al. (2008): Geological Magazine, 145, 822-830.</p><p>Majka et al. (2010): Polar Research, 29, 250-264.        </p>


2011 ◽  
Vol 62 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Vahid Ahadnejad ◽  
Ann Hirt ◽  
Mohammad-Vali Valizadeh ◽  
Saeed Bokani

The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+(mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.


1958 ◽  
Vol 63 (2) ◽  
pp. 413-431 ◽  
Author(s):  
N. Rast

SynopsisThe Schichallion complex is situated in the Central Highlands of Scotland between the villages Struan and Kinloch Rannoch. The area is of considerable geological interest and has been investigated stratigraphically and structurally by E. M. Anderson and Bailey and McCallien. As a consequence of their researches a complete stratigraphical succession has been established. Thus, the metamorphic rocks of the area are classified into the Moinian and Dalradian systems, which are separated by a plane of tectonic discontinuity known as the Boundary Slide. The Moinian rocks are quartz-felspathic granulites, whereas the Dalradian system includes pelitic schists, quartzites, limestones as well as a variety of meta-igneous rocks.In his previous research the present author has established the tectonic history of the complex. In particular three episodes of folding (F1to F3) and a much later episode of faulting (F4) were recognized. Of these the F3episode is of least significance. Consequently, events after the F2movements can be in many cases regarded as post-folding.The present contribution is concerned essentially with the mapping of the metamorphic zones (garnet and staurolite-kyanite) and with a detailed study of the mineralogical evolution of regionally metamorphosed rocks within these zones.In the field it is possible to prove that the staurolite-kyanite zone is essentially post-folding, since the kyanitepegmatites are found to cut across the minor F2-folds. In this respect textural studies confirm the field observations. The study of the internal inclusions in garnets indicates that the garnet zone has a much longer history, since pre-F2garnets are found in the southern part of the complex and throughout the central part of the area syn-tectonic F2garnets are apparent. The pre-F2garnets contain a very fine-grain F1fabric. Hence the garnets in relation to the F1movements are post-tectonic. Thus, the regional metamorphism can be subdivided into three phases: the F1metamorphism, the F2metamorphism and the post-F2metamorphism. The latter, on structural evidence appears to be at least in part contemporaneous with the F3movements.The meta-igneous rocks of the area are grouped into the hornblende-schists and granular epidiorites. The hornblende-schists appear to have suffered deformation and recrystallization during F1and F2episodes of movement. On the other hand the granular epidiorites are later than the F1and the F2movements. Although in the southern parts of the district the epidiorites have been slightly deformed, elsewhere they preserve the original ophitic texture and cut across the F1and F2folds. The deformation in the south is attributed to the effects of the F3folding. The epidiorites have been evidently emplaced as dolerites after the F2movements and before the F3metamorphism.The localized retrogressive metamorphism is associated with the F4movements, which are responsible for the Loch Tay Fault. The Fault is later than the minor intrusives associated with the Younger Granites of the Scottish Highlands and is suggested to be of a Lower or Middle O.R.S. age.On the basis of the chemical composition of the plagioclase felspars it is proposed to include all the staurolite and kyanite bearing rocks into the epidote-amphibolite facies. In this respect temperature and the hydrostatic pressure are assumed to have been the main factors, since similar minerals came into existence during static and dynamic stages of metamorphism alike.


1999 ◽  
Vol 63 (2) ◽  
pp. 179-187 ◽  
Author(s):  
J. Götze ◽  
U. Kempe ◽  
D. Habermann ◽  
L. Nasdala ◽  
R. D. Neuser ◽  
...  

AbstractCathodoluminescence (CL) microscopy and spectroscopy combined with SHRIMP ion probe measurements were carried out on detrital zircons from the Cretaceous Weferlingen quartz sand (Germany) to distinguish and characterize different zircon populations.Investigations by CL microscopy, SEM-CL and BSE imaging show that there are three main types of zircons (general grain sizes of 100–200 µm): (1) apparently weakly zoned, rounded grains with relict cores, (2) well rounded fragments of optically more or less homogeneous zircon grains showing CL zoning predominantly parallel to the z-axis, and (3) idiomorphic to slightly rounded zircon grains typically showing oscillatory euhedral CL zoning. A fourth type of low abundance is characterized by well-rounded grain fragments with an irregular internal structure showing bright yellow CL.High-resolution CL spectroscopic analyses reveal that blue CL is mainly caused by an intrinsic emission band centered near 430 nm. Dy3+ is the dominant activator element in all zircons, whereas Sm3+, Tb3+, Nd3+ have minor importance. Yellow CL (emission band between 500 and 700 nm) is probably caused by electron defects localized on the [SiO4] groups (e.g. related to oxygen vacancies) or activation by Yb2+ generated by radiation. Variations of the integral SEM-CL intensity are mainly controlled by the intensity of the broad bands and the Dy3+ peaks.SHRIMP analysis provides in situ high-resolution U-Pb dating of single zircon grains and confirms different ages for the evaluated different zircon types. The measurements show that the U-Pb ages of the zircons from Weferlingen scatter over a wide range (340 to 1750 Ma), backing up earlier conclusions that the quartz sand from Weferlingen is quite heterogeneous in terms of provenance.


1871 ◽  
Vol 8 (84) ◽  
pp. 263-268
Author(s):  
G. H. Kinahan

It appears evident from the history of the metamorphic, granitoid, and granitic rocks of Scotland, written exactly halfa century ago by MacCulloch, that those rocks are very similar to rocks of the same classes in West Galway, Ireland. This acute observer evidently examined the Scotch rocks most minutely, as the groups, sub-groups, and varieties of his “primary rocks” are carefully classed and described. Still, however, his arrangement seems to require modification, as many of the rocks he has put among his granites seem not to be true granites, but rather granitoid rocks, due to the metamorphism of igneous rocks.


Author(s):  
J.K. Lampert ◽  
G.S. Koermer ◽  
J.M. Macaoy ◽  
J.M. Chabala ◽  
R. Levi-Setti

We have used high spatial resolution imaging secondary ion mass spectrometry (SIMS) to differentiate mineralogical phases and to investigate chemical segregations in fluidized catalytic cracking (FCC) catalyst particles. The oil industry relies on heterogeneous catalysis using these catalysts to convert heavy hydrocarbon fractions into high quality gasoline and fuel oil components. Catalyst performance is strongly influenced by catalyst microstructure and composition, with different chemical reactions occurring at specific types of sites within the particle. The zeolitic portions of the particle, where the majority of the oil conversion occurs, can be clearly distinguished from the surrounding silica-alumina matrix in analytical SIMS images.The University of Chicago scanning ion microprobe (SIM) employed in this study has been described previously. For these analyses, the instrument was operated with a 40 keV, 10 pA Ga+ primary ion probe focused to a 30 nm FWHM spot. Elemental SIMS maps were obtained from 10×10 μm2 areas in times not exceeding 524s.


Sign in / Sign up

Export Citation Format

Share Document