scholarly journals Existence of solutions of plane traction problems for inextensible transversely isotropic elastic solids

Author(s):  
L. W. Morland

AbstractA plane strain or plane stress configuration of an inextensible transversely isotropic linear elastic solid with the axis of symmetry in the plane, leads to a harmonic lateral displacement field in stretched coordinates. Various displacement and mixed displacement-traction boundary conditions yield standard boundary-value problems of potential theory for which uniqueness and existence of solutions are well established. However, the important case of prescribed tractions at each boundary point gives a non-standard potential problem involving linking of boundary values at opposite ends of chords parallel to the axis of material symmetry. Uniqueness and existence of solutions, within arbitrary rigid motions, are now established for the traction problem for general domains.

1992 ◽  
Vol 27 (1) ◽  
pp. 43-44 ◽  
Author(s):  
P S Theocaris ◽  
T P Philippidis

The basic principle of positive strain energy density of an anisotropic linear or non-linear elastic solid imposes bounds on the values of the stiffness and compliance tensor components. Although rational mathematical structuring of valid intervals for these components is possible and relatively simple, there are mathematical procedures less strictly followed by previous authors, which led to an overestimation of the bounds and misinterpretation of experimental results.


1958 ◽  
Vol 25 (1) ◽  
pp. 86-88
Author(s):  
Brahmadev Sharma

Abstract A general method of solution of the steady-state thermal-stress problem of a transversely isotropic semi-infinite elastic solid is given in this paper.


2009 ◽  
Vol 77 (1) ◽  
Author(s):  
J. Xiao ◽  
A. Carlson ◽  
Z. J. Liu ◽  
Y. Huang ◽  
J. A. Rogers

The analytical solution is obtained for a semi-infinite linear elastic solid with a sinusoidal, “wavy” surface profile subject to applied strain. The amplitude A of a deformed wavy surface is related to the initial amplitude A0 and the applied strain εa through the simple expression A=A0(1−εa). This relation is confirmed independently by finite element analyses and experimental measurements of strained wavy poly(dimethylsiloxane) surfaces. Analytical solutions are also obtained for a wavy solid subject to stretch and lateral displacement.


1990 ◽  
Vol 57 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Asher A. Rubinstein

The material-toughening mechanism based on the crack-path deflection is studied. This investigation is based on a model which consists of a macrocrack (semi-infinite crack), with a curvilinear segment at the crack tip, situated in a brittle solid. The effect of material toughening is evaluated by comparison of the remote stress field parameters, such as the stress intensity factors (controlled by a loading on a macroscale), to effective values of these parameters acting in the vicinity of a crack tip (microscale). The effects of the curvilinear crack path are separated into three groups: crack-tip direction, crack-tip geometry pattern-shielding, and crack-path length change. These effects are analyzed by investigation of selected curvilinear crack patterns such as a macrocrack with simple crack-tip kink in the form of a circular arc and a macrocrack with a segment at the crack tip in the form of a sinusoidal wave. In conjunction with this investigation, a numerical procedure has been developed for the analysis of curvilinear cracks (or a system of cracks) in a two-dimensional linear elastic solid. The formulation is based on the solution of a system of singular integral equations. This numerical scheme was applied to the cases of finite and semi-infinite cracks.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


2021 ◽  
Vol 225 ◽  
pp. 01010
Author(s):  
Polina Grigoreva ◽  
Elena Vilchevskaya ◽  
Vladimir Polyanskiy

In this work, the diffusion equation for the gas-solid system is revised to describe the non-uniform distribution of hydrogen in steels. The first attempt to build a theoretical and general model and to describe the diffusion process as driven by a chemical potential gradient is made. A linear elastic solid body and ideal gas, diffusing into it, are considered. At this stage, we neglect any traps and non-linear effects. The coupled diffusion-elastic boundary problem is solved for the case of the cylinder under the tensile loads. The obtained results correspond to the experimental ones. Based on them, the assumptions about the correctness of the model and its further improvement are suggested.


The discussion in a previous paper (Oldroyd 1950), on the invariance properties required of the equations of state of a homogeneous continuum, is extended by taking into account thermodynamic restrictions on the form of the equations, in the case of an elastic solid deformed from an unstressed equilibrium configuration. The general form of the finite strainstress-temperature relations, expressed in terms of a free-energy function, is deduced without assuming that the material is isotropic. The results of other authors based on the assumption of isotropy are shown to follow as particular cases. The equations of state are derived by considering quasi-static changes in an elastic solid continuum; the results then apply to non-ideally elastic solids in equilibrium, or subjected to quasi-static changes only, and to ideally elastic solids in general motion. A necessary and sufficient compatibility condition for the finite strains at different points of a continuum is also derived. As a simple illustration of the derivation and use of equations of state involving anisotropic physical constants, the torsion of an anisotropic cylinder is discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document