scholarly journals An asymptotic solution of an integro-differential equation arising in magnetic coupling through thin shield walls

Author(s):  
G. F. Fitz-Gerald ◽  
N. A. McDonald

An equation which has arisen in a study of the magentic coupling through a small rectangular aperture of dimension A × B in a thin shield wall is discussed. The magnetic polarisability of such an aperture in a conducting wall of zero thickness is known to be expressible as RHA3, in which RH is dimensionless and is a function of the aspect ratio α ≡ B/A. An asymptotic solution procedure of a certain variational formulation of this problem is described in the limiting case of large aspect ratio α. Explicit analytical formulase for the leading terms in the expansion are given. These analytical results justify the purely numerical procedures used previously to obtain approximate solutions of this formulation of the problem.

1965 ◽  
Vol 23 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Yun-Yuan Shi

The results of Proudman & Pearson (1957) and Kaplun & Lagerstrom (1957) for a sphere and a cylinder are generalized to study an ellipsoid of revolution of large aspect ratio with its axis of revolution perpendicular to the uniform flow at infinity. The limiting case, where the Reynolds number based on the minor axis of the ellipsoid is small while the other Reynolds number based on the major axis is fixed, is studied. The following points are deduced: (1) although the body is three-dimensional the expansion is in inverse power of the logarithm of the Reynolds number as the case of a two-dimensional circular cylinder; (2) the existence of the ends and the variation of the diameter along the axis of revolution have no effect on the drag to the first order; (3) a formula for drag is obtained to higher order.


1965 ◽  
Vol 87 (3) ◽  
pp. 568-576 ◽  
Author(s):  
J. H. Vohr ◽  
C. Y. Chow

A differential equation is obtained for the smoothed “overall” pressure distribution around a herringbone-grooved, gas-lubricated journal bearing operating with a variable film thickness. The equation is based on the limiting case of an idealized bearing for which the number of grooves approaches an infinite number. A numerical solution to the differential equation is obtained valid for small eccentricities. This solution includes the case where the journal is undergoing steady circular whirl. In addition to the usual plain bearing parameters L/D, Λ, and whirl speed ratio ω3/(ω1 + ω2), the behavior of a grooved bearing also depends on four additional parameters: The groove angle β, the relative groove width α, the relative groove depth H0, and a compressibility number, Λs, which is based on the relative speed between the grooved and smooth members of the bearing. Results are presented showing bearing radial force and attitude angle as functions of β, α, H0, Λs, Λ, and whirl speed ratio.


Author(s):  
Alexandrina Untaroiu ◽  
Costin D. Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire

Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). In this paper, the linearized rotordynamic coefficients for a seal with large aspect ratio are calculated by means of a three dimensional CFD analysis performed to predict the fluid-induced forces acting on the rotor. For comparison, the dynamic coefficients were also calculated using two other codes: one developed on the bulk flow method and one based on finite difference method. These two sets of dynamic coefficients were compared with those obtained from CFD. Results show a reasonable correlation for the direct stiffness estimates, with largest value predicted by CFD. In terms of cross-coupled stiffness, which is known to be directly related to cross-coupled forces that contribute to rotor instability, the CFD predicts also the highest value; however a much larger discrepancy can be observed for this term (73% higher than value predicted by finite difference method and 79% higher than bulk flow code prediction). Similar large differences in predictions one can see in the estimates for damping and direct mass coefficients, where highest values are predicted by the bulk flow method. These large variations in damping and mass coefficients, and most importantly the large difference in the cross-coupled stiffness predictions, may be attributed to the large difference in seal geometry (i.e. the large aspect ratio AR>1.0 of this seal model vs. the short seal configuration the bulk flow code is usually calibrated for, using an empirical friction factor).


2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


2005 ◽  
Vol 430 (3) ◽  
pp. L57-L60 ◽  
Author(s):  
F. Rincon ◽  
F. Lignières ◽  
M. Rieutord

Sign in / Sign up

Export Citation Format

Share Document