A Performance Analysis of Low-Cost GPS Receivers in Kinematic Applications

2009 ◽  
Vol 62 (4) ◽  
pp. 687-697 ◽  
Author(s):  
R. M. Alkan ◽  
M. H. Saka

Low-cost OEM GPS receivers with the capability of tracking the carrier phase are now used for many applications in the navigation and tracking arena. These receivers provide flexibility in applying carrier smoothing algorithms to improve the pseudorange positioning accuracy and even perform carrier-phase differential positioning. In this study, the performance of a low-cost single-frequency OEM GPS receiver for high-accuracy kinematic positioning in marine applications is investigated. As a first step, a set of zero baseline tests were carried out to evaluate the performance of the GPS receivers. In the second stage, a kinematic test was conducted at the Halic (Golden Horn), Istanbul. The results show that kinematic positioning with centimetre level accuracy can be achieved by the low-cost OEM GPS receiver in differential mode, suggesting its use in a variety of kinematic applications. The use of such a system could considerably reduce the cost of the GPS receiver and the total project costs of many applications.

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2463 ◽  
Author(s):  
Tobias Kersten ◽  
Jens-André Paffenholz

Various GNSS applications require low-cost, small-scale, lightweight and power-saving GNSS devices and require high precision in terms of low noise for carrier phase and code observations. Applications vary from navigation approaches to positioning in geo-monitoring units up to integration in multi-sensor-systems. For highest precision, only GNSS receivers are suitable that provide access to raw data such as carrier phase, code ranges, Doppler and signal strength. A system integration is only possible if the overall noise level is known and quantified at the level of the original observations. A benchmark analysis based on a zero baseline is proposed to quantify the stochastic properties. The performance of the consumer grade GNSS receiver is determined and evaluated against geodetic GNSS receivers to better understand the utilization of consumer grade receivers. Results indicate high similarity to the geodetic receiver, even though technical limitations are present. Various stochastic techniques report normally distributed carrier-phase noise of 2 mm and code-range noise of 0.5–0.8 m. This is confirmed by studying the modified Allan standard deviation and code-minus-carrier combinations. Derived parameters serve as important indicators for the integration of GNSS receivers into multi-sensor-systems.


2019 ◽  
Vol 13 ◽  
pp. 174830181983304
Author(s):  
Hangshuai Ma ◽  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Chuanyi Li

The application of Beidou Satellite Navigation System (BDS) is developing rapidly. To satisfy the increasing demand for positioning performance, single-frequency precise point positioning (SFPPP) has been a focus in recent years. By introducing the SFPPP technique into the INS/BDS integrated system, higher navigation accuracy can be obtained. Cycle slip, which is caused by signal blockage during the measurement of the carrier phase, is a challenge for SFPPP application. In the INS/SFPPP-BDS integrated system, cycle slip can cause serious bias in BDS carrier phase measurements. In this paper, a new INS/SFBDS-PPP tightly coupled navigation system and a robust adaptive filtering method are proposed. Using a low-cost single-frequency receiver integrated with INS, an observation model was built based on the pseudo range and carrier phase by PPP preprocessing. The cycle slip was introduced into the state vector to improve the estimation precision. The test statistics, comprising the innovation and its covariance, were used to estimate the time at which cycle slip occurred and its amplitude to compensate for its effect on the observation. Finally, the proposed system model and algorithm are validated by simulation.


2007 ◽  
Vol 17 (05) ◽  
pp. 383-393 ◽  
Author(s):  
M. R. MOSAVI

The Global Positioning System (GPS) is a network of satellites, whose original purpose was to provide accurate navigation, guidance, and time transfer to military users. The past decade has also seen rapid concurrent growth in civilian GPS applications, including farming, mining, surveying, marine, and outdoor recreation. One of the most significant of these civilian applications is commercial aviation. A stand-alone civilian user enjoys an accuracy of 100 meters and 300 nanoseconds, 25 meters and 200 nanoseconds, before and after Selective Availability (SA) was turned off. In some applications, high accuracy is required. In this paper, five Neural Networks (NNs) are proposed for acceptable noise reduction of GPS receivers timing data. The paper uses from an actual data collection for evaluating the performance of the methods. An experimental test setup is designed and implemented for this purpose. The obtained experimental results from a Coarse Acquisition (C/A)-code single-frequency GPS receiver strongly support the potential of methods to give high accurate timing. Quality of the obtained results is very good, so that GPS timing RMS error reduce to less than 120 and 40 nanoseconds, with and without SA.


2021 ◽  
Author(s):  
Abdulla Al-Naqbi

Positioning using low-cost, single-frequency GPS receivers provides an economical solution, but these receivers are subject to biases leading to degradation of the accuracy required. Factors contributing to degradation in the accuracy of low-cost systems are ionospheric delay, multipath, and measurement noise. Unless carefully addressed, these errors distort the ambiguity resolution process, and result in less accurate positioning solutions. However, with the modern hardware improvements, measurement noise is now almost neglibible. Ionospheric delay has been dramatically reduced with the availablity of global or local ionospheric maps produced by various organizations (e.g., International GNSS Service (IGS), and National Oceanic and Atmospheric Administraion (NOAA). The major remaining constraint and challenging problem is multipath. This is because mulitpath is environmentally dependant, difficult to model mathematically, and cannot be reduced through differential positioning. The research proposes a new approach to identify multipath-contaminated L1 measurements. The approach is based on wavelet analysis using Daubechies family wavelets. First, the difference between the code and carrier phase measurements was estimated, leaving essentially twice the ionospheric delay, multipath and system noise. The ionospheric delay is largely removed by using high resolution ionospheric delay maps produced by NOAA. The remaining residuals contain mainly low-frequency multipath, if existed, and high-frequency part of the residual component described above. The L1 measurements obtaines from the staellites with lowest multipath were used to compute the final positions using Trimble Total Control (TTC) and Bernese scientific processing software packages. The AC12 single-frequency GPS receiver was extensively tested in static and kinematic modes. Accuracies within 5 cm was demostrated for baselines up to 65 km under various multipath environments.


2021 ◽  
Vol 13 (18) ◽  
pp. 3642
Author(s):  
Wei Ding ◽  
Wei Sun ◽  
Yang Gao ◽  
Jiaji Wu

Attitude and heading estimation methods using the global navigation satellite system (GNSS) are generally based on multi-antenna deployment, where the installation space and system cost increase with the increase in the number of antennas. Since the single-antenna receiver is still the major choice of the mass market, we focus on precise and reliable heading and pitch estimation using a low-cost GNSS receiver. Carrier phase observations are precise but have an ambiguity problem. A single difference between consecutive epochs can eliminate ambiguity and reduce the measurement errors. In this work, a measurement model based on the time-differenced carrier phases (TDCPs) is utilized to estimate the precise delta position of the antenna between two consecutive epochs. Then, considering the motion constraint, the heading and pitch angles of a moving land vehicle can be determined by the components of the estimated receiver delta position. A threshold on the length of the delta position is selected to avoid large errors in static periods. To improve the reliability of the algorithm, the Doppler-aided cycle slip detection method is applied to exclude carrier phases with possible cycle slips. A real vehicular dynamic experiment using a low-cost, single-frequency GNSS receiver is conducted to evaluate the proposed algorithm. The experimental results show that the proposed algorithm is capable of providing precise vehicular heading and pitch estimates, with both the root mean square errors being better than 1.5°. This also indicates that the cycle slip exclusion is indispensable to avoid unexpected large errors.


2004 ◽  
Vol 57 (1) ◽  
pp. 135-144 ◽  
Author(s):  
M. H. Saka ◽  
T. Kavzoglu ◽  
C. Ozsamli ◽  
R. M. Alkan

The accuracy that can be achieved by a single GPS receiver in stand-alone mode is around 10 metres with SA switched off; this is not adequate for most hydrographic studies. This study aims to improve this level of accuracy using a single geodetic receiver in stand-alone mode by applying a phase smoothing algorithm. The algorithm described in this study requires that the measurements be started from a known point for initialisation. The test site selected for the study is Halic bay, Istanbul. After GPS data were collected on a geodetic point for initialisation, the receiver was moved to a hydrographic vessel and trial measurements were performed along several survey profiles. The position of the vessel was calculated at every epoch using the carrier phase smoothing algorithm. In order to analyse the accuracy of the results, a second receiver collected data on another known point on the seashore during the whole session. The position of the vessel was accurately determined using a kinematic positioning method considering the data collected by both receivers. The results produced show that an accuracy of less than a metre can be achieved using the approach considered in this study.


Sign in / Sign up

Export Citation Format

Share Document