scholarly journals Virtual Electronic Aids to Navigation for Remote and Ecologically Sensitive Regions

2016 ◽  
Vol 70 (2) ◽  
pp. 225-241 ◽  
Author(s):  
R. Glenn Wright ◽  
Michael Baldauf

Vessel traffic in the Arctic is expanding in volume both within and transiting the region, yet the infrastructure necessary to support modern ship navigation is lacking. This includes aids to navigation such as buoys and beacons that can be difficult to place and maintain in this hostile environment that stretches across vast distances. The results of research are described which determine whether virtual electronic Aids to Navigation (eAtoN) existing entirely as digital information objects can overcome the practical limitations of physical aids to navigation (AtoN) and Automatic Identification System (AIS) radio eAtoN. Capabilities unique to virtual eAtoN that are not available using either physical or AIS radio technologies are also examined including dynamic and real time properties and immunity to Global Navigation Satellite System (GNSS) and AIS spoofing, aliasing, denial of service attacks and service outages. Conclusions are provided describing potential methods of deployment based upon similar concepts already in use.

2021 ◽  
pp. 1-13
Author(s):  
Gareth Wimpenny ◽  
Jan Šafář ◽  
Alan Grant ◽  
Martin Bransby

Abstract The civilian Automatic Identification System (AIS) has no inherent protection against spoofing. Spoofed AIS messages have the potential to interfere with the safe navigation of a vessel by, amongst other approaches, spoofing maritime virtual aids to navigation and/or differential global navigation satellite system (DGNSS) correction data conveyed across it. Acting maliciously, a single transmitter may spoof thousands of AIS messages per minute with the potential to cause considerable nuisance; compromising information provided by AIS intended to enhance the mariner's situational awareness. This work describes an approach to authenticate AIS messages using public key cryptography (PKC) and thus provide unequivocal evidence that AIS messages originate from genuine sources and so can be trusted. Improvements to the proposed AIS authentication scheme are identified which address a security weakness and help avoid false positives to spoofing caused by changes to message syntax. A channel loading investigation concludes that sufficient bandwidth is available to routinely authenticate all AIS messages whilst retaining backwards compatibility by carrying PKC ‘digital signatures’ in a separate VHF Data Exchange System (VDES) side channel.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shexiang Ma ◽  
Jie Wang ◽  
Xin Meng ◽  
Junfeng Wang

Vessels can obtain high precision positioning by using the global navigation satellite system (GNSS), but when the ship borne GNSS receiver fails, the existence of an alternative positioning system is important for the navigation safety of vessel. In this paper, a localization method based on the signals transmitted by satellite-based automatic identification system (AIS) is proposed for vessel in GNSS-denied environments. In the proposed method, the positioning model is a modification on the basis of time difference and frequency difference of arrival measurements by introducing an additional measurement, and the measurement is obtained through the interactive multiple model algorithm. The performance of the proposed strategy is evaluated through simulations, and the results validate the feasibility and reliability of vessel localization based on satellite-based AIS.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1590 ◽  
Author(s):  
Yi Jiang ◽  
Kai Zheng

In order to overcome the vulnerability of the Global Navigation Satellite System (GNSS), the International Maritime Organization (IMO) initiated the ranging mode (R-Mode) of the automatic identification system (AIS) to provide resilient position data. As the existing AIS is a communication system, the number of shore stations as reference stations cannot satisfy positioning requirements. Especially in the area near a shore station, it is very common that a vessel can only receive signals from one shore station, where the traditional positioning method cannot be used. A novel position estimation method using multiple antennas on shipborne equipment is proposed here, which provides a vessel’s position even though the vessel can only receive signals from a single shore station. It is beneficial for solving positioning issues in proximity to the coast. Further, as the distances between different antennas to the shore station are not sufficiently independent, the positioning matrix can easily be near singularity or ill-conditioned; thus, an effective position solving method is derived. Furthermore, the proposed method is verified and evaluated in different scenarios by numerical simulation. We assessed the influencing factors of positioning performance, such as the vessel’s heading angle, the relative position, and the distances between the shore station and the vessel. The proposed method widely expands the application scope of the AIS R-Mode positioning system.


2018 ◽  
Vol 8 (11) ◽  
pp. 2322 ◽  
Author(s):  
Lin Zhao ◽  
Mouyan Wu ◽  
Jicheng Ding ◽  
Yingyao Kang

The strategic position of the polar area and its rich natural resources are becoming increasingly important, while the northeast and northwest passages through the Arctic are receiving much attention as glaciers continue to melt. The global navigation satellite system (GNSS) can provide real-time observation data for the polar areas, but may suffer low elevation problems of satellites, signals with poor carrier-power-to-noise-density ratio (C/N0), ionospheric scintillations, and dynamic requirements. In order to improve the navigation performance in polar areas, a deep-coupled navigation system with dual-frequency GNSS and a grid strapdown inertial navigation system (SINS) is proposed in the paper. The coverage and visibility of the GNSS constellation in polar areas are briefly reviewed firstly. Then, the joint dual-frequency vector tracking architecture of GNSS is designed with the aid of grid SINS information, which can optimize the tracking band, sharing tracking information to aid weak signal channels with strong signal channels and meet the dynamic requirement to improve the accuracy and robustness of the system. Besides this, the ionosphere-free combination of global positioning system (GPS) L1 C/A and L2 signals is used in the proposed system to further reduce ionospheric influence. Finally, the performance of the system is tested using a hardware simulator and semiphysical experiments. Experimental results indicate that the proposed system can obtain a better navigation accuracy and robust performance in polar areas.


Polar Record ◽  
2011 ◽  
Vol 48 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Jesper Abildgaard Larsen ◽  
Jens Dalsgaard Nielsen ◽  
Hans Peter Mortensen ◽  
Ulrik Wilken Rasmussen ◽  
Troels Laursen ◽  
...  

ABSTRACTDue to the increased melting season in the arctic regions, especially in the seas surrounding Greenland, there has been an increased interest in utilising these waterways, both as an efficient transport route and an attractive leisure destination. However, with heavier traffic comes an increased risk of accidents. Due to the immense size and poor infrastructure of Greenland, it is not feasible to deploy ground based ship monitoring stations throughout the Greenland coastline. Thus the only feasible solution is to perform such surveillance from space. In this paper it is shown how it is possible to receive transmissions from the Automatic Identification System (AIS) from space and the quality of the received AIS signal is analysed. To validate the proposed theory, a field study, utilising a prototype of AAUSAT3, the third satellite from Aalborg University, was performed using a stratospheric balloon flight in the northern part of Sweden and Finland during the autumn of 2009. The analysis finds that, assuming a similar ship distribution as in the Barents Sea, it is feasible to monitor the ship traffic around Greenland from space with a satisfactory result.


2017 ◽  
Vol 24 (4) ◽  
pp. 18-26
Author(s):  
Alfonso López ◽  
Miguel Gutiérrez ◽  
Andrés Ortega ◽  
Cristina Puente ◽  
Alejandro Morales ◽  
...  

Abstract The paper analyses the performance of an Automatic Vessel Identification System on Medium Frequency (AVISOMEF), which works with the Grid Method (GM) on high density maritime European routes using real data and uniformly distributed data. Compared to other systems, AVISOMEF is a novelty, as it is not a satellite system, nor is it limited by a given coverage distance, in contrast to the Automatic Identification System (AIS), though in exceptional circumstances it leans towards it. To perform the analysis, special simulation software was developed. Moreover, a number of maritime routes along with their traffic density data were selected for the study. For each route, two simulations were performed, the first of which based on the uniform traffic distribution along the route, while the second one made use of real AIS data positioning of vessels sailing on the selected routes. The obtained results for both simulations made the basis for formulating conclusions regarding the capacity of selected routes to support AVISOMEF.


2021 ◽  
Vol 13 (3) ◽  
pp. 395
Author(s):  
Lee Jones ◽  
Peter Hobbs

Geomatics is the discipline of electronically gathering, storing, processing, and delivering spatially related digital information; it continues to be one of the fastest expanding global markets, driven by technology. The British Geological Survey (BGS) geomatics capabilities have been utilized in a variety of scientific studies such as the monitoring of actively growing volcanic lava domes and rapidly retreating glaciers; coastal erosion and platform evolution; inland and coastal landslide modelling; mapping of geological structures and fault boundaries; rock stability and subsidence feature analysis, and geo-conservation. In 2000, the BGS became the first organization outside the mining industry to use Terrestrial LiDAR Scanning (TLS) as a tool for measuring change; paired with a Global Navigation Satellite System (GNSS), BGS were able to measure, monitor, and model geomorphological features of landslides in the United Kingdom (UK) digitally. Many technologies are used by the BGS to monitor the earth, employed on satellites, airplanes, drones, and ground-based equipment, in both research and commercial settings to carry out mapping, monitoring, and modelling of earth surfaces and processes. Outside BGS, these technologies are used for close-range, high-accuracy applications such as bridge and dam monitoring, crime and accident scene analysis, forest canopy and biomass measurements and military applications.


2021 ◽  
Author(s):  
Takeshi Sugimura ◽  
Hajime Yamaguchi ◽  
Hironori Yabuki

Abstract With the reduction in extent of Arctic Ocean sea ice in recent years, commercial use of Arctic Sea shipping routes has attracted increasing attention. An urgent task for promoting the use of safe and cost-efficient routes in the Arctic Sea is the construction of a navigation support system. Such a system is essential not only for monitoring and forecasting the extent of sea ice but also for integrating such information in determination of the optimal route. This research developed an Arctic Sea Route Search System that has been published as a web application on the Arctic Data archive System website. Ship speed is calculated based on an approximate expression of actual Automatic Identification System data and an Ice Index, which is an index that reflects the ease of navigation based on ice type and the ship’s ice class. The A* algorithm searches for the optimal route using a search graph that places nodes at the grid positions of input data. Comparison of several test calculations using different parameters confirmed that the route search system provides reasonable results.


Author(s):  
Aybars Oruc

This study seeks to contribute to the literature by presenting a discussion of potential cyber risks and precautionary measures concerning unmanned vehicles as a whole. In this study, Global Navigation Satellite System (GNSS) spoofing, jamming, password cracking, Denial-of-Service (DoS), injecting malware, and modification of firmware are identified as potential cyberattack methods against unmanned vehicles. Potential deterrents against the aforementioned cyberattack methods are suggested as well. Illustrations of such safeguards include creating an architecture of the multi-agent system, using solid-state storage components, applying distributed programming tools and techniques, implementing sophisticated encryption techniques for data storage and transmission, deploying additional sensors and systems, and comparing the data received from different sensors.


Sign in / Sign up

Export Citation Format

Share Document