Using spatial simulations of habitat modification for adaptive management of protected areas: Mediterranean grassland modification by woody plant encroachment

2013 ◽  
Vol 41 (2) ◽  
pp. 144-156 ◽  
Author(s):  
PAOLA MAIROTA ◽  
VINCENZO LERONNI ◽  
WEIMIN XI ◽  
DAVID J. MLADENOFF ◽  
HARINI NAGENDRA

SUMMARYSpatial simulation may be used to model the potential effects of current biodiversity approaches on future habitat modification under differing climate change scenarios. To illustrate the approach, spatial simulation models, including landscape-level forest dynamics, were developed for a semi-natural grassland of conservation concern in a southern Italian protected area, which was exposed to woody vegetation encroachment. A forest landscape dynamics simulator (LANDIS-II) under conditions of climate change, current fire and alternative management regimes was used to develop scenario maps. Landscape pattern metrics provided data on fragmentation and habitat quality degradation, and quantified the spatial spread of different tree species within grassland habitats. The models indicated that approximately one-third of the grassland area would be impacted by loss, fragmentation and degradation in the next 150 years. Differing forest management regimes appear to influence the type of encroaching species and the density of encroaching vegetation. Habitat modifications are likely to affect species distribution and interactions, as well as local ecosystem functioning, leading to changes in estimated conservation value. A site-scale conservation strategy based on feasible integrated fire and forest management options is proposed, considering the debate on the effectiveness of protected areas for the conservation of ecosystem services in a changing climate. This needs to be tested through further modelling and scenario analysis, which would benefit from the enhancement of current modelling capabilities of LANDIS-II and from combination with remote sensing technologies, to provide early signals of environmental shifts both within and outside protected areas.

2021 ◽  
Author(s):  
Gisèle K. Sinasson ◽  
Charlie M. Shackleton ◽  
Oscar Teka ◽  
Brice Sinsin

<p>Understanding the niche and habitat requirements of useful and threatened species, their shifts under climate change and how well protected areas (PAs) preserve these habitats is relevant for guiding sustainable management actions. Here we assessed the ecological factors underlying the distribution of two multipurpose and threatened species, <i>Mimusops andongensis</i> and <i>M</i>. <i>kummel</i>, in Benin, and potential changes in the suitable habitats covered by PAs, under climate change scenarios. Fifty seven occurrence points were collected for <i>M</i>. <i>andongensis</i> and 81 for <i>M</i>. <i>kummel</i>. </p>


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


2012 ◽  
Vol 60 (2) ◽  
pp. 128 ◽  
Author(s):  
Pippa J. Michael ◽  
Paul B. Yeoh ◽  
John K. Scott

The factors determining the distribution of the Western Australian endemic Solanum hoplopetalum Bitter & Summerh. (Solanaceae) were assessed because it was identified as a potential weed risk to Australian cropping regions, including under climate change scenarios. Incubation at constant temperatures determined daily plant growth rates and plants required 1380 degree-days above a threshold of 12.4°C to complete growth to flowering. From this and published information on the plant’s biology, we developed a mechanistic niche model using CLIMEX. The model projection for current climates produced a highly significant match to known distribution records. Spatially, the lower south-west and areas eastwards to South Australia, western New South Wales and southern parts of the Northern Territory were climatically suitable for growth of S. hoplopetalum. However, by 2070 the area under risk decreases, with the projected distribution under climate change contracting southwards. We hypothesise that climatic extremes and edaphic factors, possibly high soil pH, may be major factors determining the current distribution of S. hoplopetalum. Containment on the southern edge of the current distribution, interstate quarantine and local eradication in new areas of invasion are recommended as management options to combat the potential for this native weed to spread.


2020 ◽  
Author(s):  
Mouna Feki ◽  
Giovanni Ravazzani ◽  
Tommaso Caloiero ◽  
Gaetano Pellicone

&lt;p&gt;Forests ecosystems provide several ecosystem services among which the regulation of the hydrological cycle. These ecosystems are exposed to different forms of disturbances induced by human activities, management strategies, and climate change. The objective of INNOMED project, for the Italian case study, is to understand the response of forest to different silvicultural practices under climate change conditions. The study site is the the Bonis catchment located in the mountain area of Sila Greca (39&amp;#176;25&amp;#8217;15&amp;#8217;&amp;#8217;N, 16&amp;#176;12&amp;#8217;38&amp;#8217;&amp;#8217;W), in the Calabria region (southern Italy). This small catchment has a surface of 1.39 km&lt;sup&gt;2&lt;/sup&gt; and a mean elevation of 1131 m above sea level. Almost 93% of the total area is covered by forest stand, dominated by about 50-year-old Calabrian pine (Pinus laricio Poiret) forests. In order to simulate the response of the catchment to different climate and management scenarios, FEST-WB distributed hydrological model was used. Within the framework of this project, FEST-FOREST module has been implemented in order to consider vegetation dynamics interactions with the hydrological response of the watershed. Since 1986, the basin was monitored through the installation of different instruments. Rainfall was measured by three rain gauges (with a tipping bucket) together with temperature that were measured at three different meteorological stations. In May 2003, a tower for measurement of eddy fluxes was installed at an altitude of 1100 m a.s.l, on a 54 years old plantation of Laricio pine which allowed monitoring of other parameters. Runoff was measured at the outlet of the catchment using a gauging structure. These data were used for the calibration and validation of the model before being implemented for future scenarios simulations. The results of these simulations delivered the potential impacts and the vulnerability of the Bonis catchment to different scenarios. These outcomes provide for the stakeholders a scientifically based and solid information for a sustainable management of the catchment.&lt;/p&gt;


2016 ◽  
Vol 46 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Fabian H. Härtl ◽  
Ivan Barka ◽  
W. Andreas Hahn ◽  
Tomáš Hlásny ◽  
Florian Irauschek ◽  
...  

Forests provide countless ecological, societal, and climatological benefits. With changing climate, maintaining certain services may lead to a decrease in the quantity or quality of other services available from that source. Accordingly, our research objective is to analyze the effects of the provision of a certain ecosystem service on the economically optimized harvest schedules and how harvest schedules will be influenced by climate change. Based on financial portfolio theory, we determined, for two case study regions in Austria and Slovakia, treatment schedules based on nonlinear programming, which integrates climate-sensitive biophysical risks and risk-averting behavior of the management. In both cases, results recommend reducing the overaged stocking volume within several decades to establish new ingrowth, leading to an overall reduction of age and related risk, as well as an increase in growth. Under climate change conditions, the admixing of hardwoods towards spruce–fir–beech (Austria) or spruce–pine–beech (Slovakia) stands should be emphasized to account for the changing risk and growth conditions. Moreover, climate change scenarios either increased (Austria) or decreased (Slovakia) the economic return slightly. In both cases, the costs for providing the ecosystem service “rock fall protection” increases under climate change. Although in the Austrian case there is no clear tendency between the management options, in the Slovakian case, a close-to-nature management option is preferred under climate change conditions. Increasing tree species richness, increasing structural diversity, replacing high-risk stands, and reducing average growing stocks are important preconditions for a successful sustainable management of European mountain forests in the long term.


2021 ◽  
Author(s):  
Gisèle K.Sinasson ◽  
Charlie M. Shackleton ◽  
Oscar Teka ◽  
Brice Sinsin

<p>Understanding the niche and habitat requirements of useful and threatened species, their shifts under climate change and how well protected areas (PAs) preserve these habitats is relevant for guiding sustainable management actions. Here we assessed the ecological factors underlying the distribution of two multipurpose and threatened species, <i>Mimusops andongensis</i> and <i>M</i>. <i>kummel</i>, in Benin, and potential changes in the suitable habitats covered by PAs, under climate change scenarios. Fifty seven occurrence points were collected for <i>M</i>. <i>andongensis</i> and 81 for <i>M</i>. <i>kummel</i>. </p>


2020 ◽  
Author(s):  
Zhen Liu ◽  
Luis Sandoval ◽  
Lauren Sherman ◽  
Andrew Wilson

ABSTRACTAnimals endemic to tropical mountains are known to be especially vulnerable to climate change. The Cordillera de Talamanca (Costa Rica and Panama) is a geographically isolated mountain chain and global biodiversity hotspot, home to more than 50 endemic bird species. We used eBird community science observations to predict the distributions of a suite of 48 of these endemic birds in 2006-2015, and in 2070, under four climate change scenarios. Species distributions were predicted using program Maxent, incorporating elevation, satellite derived habitat data, and WorldClim climate variables. Model fit, as assessed by Area under the Receiver Operator Curve (AUC) was very high for most species, ranging from 0.877 to 0.992 (mean of 0.94). We found that most species are predicted to undergo range contractions by 2070, with a mean of 15% under modest climate change (RCP 2.6) up to a mean of 40% under more severe climate change (RCP 8.5). Most of the current ranges of these species are within existing protected areas (average of 59% in 2006-2015), and with prospective range contractions, the importance of these protected areas is forecast to increase. We suggest that these predicted range declines should elevate conservation concerns for this suite of species, and vigilance, in the form of better population monitoring, is urgently needed.


Sign in / Sign up

Export Citation Format

Share Document