scholarly journals GOTILWA+: a process-based model that evaluates the effects of climate change on forests and explores forest management options for its mitigation

Ecosistemas ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 29-36 ◽  
Author(s):  
Daniel Nadal Sala ◽  
Santiago Sabaté
2013 ◽  
Vol 41 (2) ◽  
pp. 144-156 ◽  
Author(s):  
PAOLA MAIROTA ◽  
VINCENZO LERONNI ◽  
WEIMIN XI ◽  
DAVID J. MLADENOFF ◽  
HARINI NAGENDRA

SUMMARYSpatial simulation may be used to model the potential effects of current biodiversity approaches on future habitat modification under differing climate change scenarios. To illustrate the approach, spatial simulation models, including landscape-level forest dynamics, were developed for a semi-natural grassland of conservation concern in a southern Italian protected area, which was exposed to woody vegetation encroachment. A forest landscape dynamics simulator (LANDIS-II) under conditions of climate change, current fire and alternative management regimes was used to develop scenario maps. Landscape pattern metrics provided data on fragmentation and habitat quality degradation, and quantified the spatial spread of different tree species within grassland habitats. The models indicated that approximately one-third of the grassland area would be impacted by loss, fragmentation and degradation in the next 150 years. Differing forest management regimes appear to influence the type of encroaching species and the density of encroaching vegetation. Habitat modifications are likely to affect species distribution and interactions, as well as local ecosystem functioning, leading to changes in estimated conservation value. A site-scale conservation strategy based on feasible integrated fire and forest management options is proposed, considering the debate on the effectiveness of protected areas for the conservation of ecosystem services in a changing climate. This needs to be tested through further modelling and scenario analysis, which would benefit from the enhancement of current modelling capabilities of LANDIS-II and from combination with remote sensing technologies, to provide early signals of environmental shifts both within and outside protected areas.


2017 ◽  
Vol 26 (2) ◽  
pp. eR04S ◽  
Author(s):  
Ricardo Ruiz-Peinado ◽  
Andrés Bravo-Oviedo ◽  
Eduardo López-Senespleda ◽  
Felipe Bravo ◽  
Miren Del Rio

Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area.Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area.Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change.Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change


1999 ◽  
Vol 150 (8) ◽  
pp. 275-287 ◽  
Author(s):  
Harald Bugmann

Anthropogenic changes of the climate have the potential to significantly affect forests in the coming century. In this paper, methods for assessing the impacts of such changes are reviewed, and mathematical models are used to evaluate possible changes of the tree species composition and biomass storage of Swiss forests. The simulation results are discussed from an ecological as well as from a forestry perspective.


2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 273
Author(s):  
Samuel Royer-Tardif ◽  
Jürgen Bauhus ◽  
Frédérik Doyon ◽  
Philippe Nolet ◽  
Nelson Thiffault ◽  
...  

Climate change is threatening our ability to manage forest ecosystems sustainably. Despite strong consensus on the need for a broad portfolio of options to face this challenge, diversified management options have yet to be widely implemented. Inspired by functional zoning, a concept aimed at optimizing biodiversity conservation and wood production in multiple-use forest landscapes, we present a portfolio of management options that intersects management objectives with forest vulnerability to better address the wide range of goals inherent to forest management under climate change. Using this approach, we illustrate how different adaptation options could be implemented when faced with impacts related to climate change and its uncertainty. These options range from establishing ecological reserves in climatic refuges, where self-organizing ecological processes can result in resilient forests, to intensive plantation silviculture that could ensure a stable wood supply in an uncertain future. While adaptation measures in forests that are less vulnerable correspond to the traditional functional zoning management objectives, forests with higher vulnerability might be candidates for transformative measures as they may be more susceptible to abrupt changes in structure and composition. To illustrate how this portfolio of management options could be applied, we present a theoretical case study for the eastern boreal forest of Canada. Even if these options are supported by solid evidence, their implementation across the landscape may present some challenges and will require good communication among stakeholders and with the public.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 755
Author(s):  
Eric B. Searle ◽  
F. Wayne Bell ◽  
Guy R. Larocque ◽  
Mathieu Fortin ◽  
Jennifer Dacosta ◽  
...  

In the past two decades, forest management has undergone major paradigm shifts that are challenging the current forest modelling architecture. New silvicultural systems, guidelines for natural disturbance emulation, a desire to enhance structural complexity, major advances in successional theory, and climate change have all highlighted the limitations of current empirical models in covering this range of conditions. Mechanistic models, which focus on modelling underlying ecological processes rather than specific forest conditions, have the potential to meet these new paradigm shifts in a consistent framework, thereby streamlining the planning process. Here we use the NEBIE (a silvicultural intervention scale that classifies management intensities as natural, extensive, basic, intensive, and elite) plot network, from across Ontario, Canada, to examine the applicability of a mechanistic model, ZELIG-CFS (a version of the ZELIG tree growth model developed by the Canadian Forest Service), to simulate yields and species compositions. As silvicultural intensity increased, overall yield generally increased. Species compositions met the desired outcomes when specific silvicultural treatments were implemented and otherwise generally moved from more shade-intolerant to more shade-tolerant species through time. Our results indicated that a mechanistic model can simulate complex stands across a range of forest types and silvicultural systems while accounting for climate change. Finally, we highlight the need to improve the modelling of regeneration processes in ZELIG-CFS to better represent regeneration dynamics in plantations. While fine-tuning is needed, mechanistic models present an option to incorporate adaptive complexity into modelling forest management outcomes.


Sign in / Sign up

Export Citation Format

Share Document