Changing invaders: trends of gigantism in insular introduced rats

2018 ◽  
Vol 45 (3) ◽  
pp. 203-211 ◽  
Author(s):  
ALEXANDRA A.E. VAN DER GEER

SUMMARYThe degree and direction of morphological change in invasive species with a long history of introduction are insufficiently known for a larger scale than the archipelago or island group. Here, I analyse data for 105 island populations of Polynesian rats,Rattus exulans, covering the entirety of Oceania and Wallacea to test whether body size differs in insular populations and, if so, what biotic and abiotic features are correlated with it. All insular populations of this rat, except one, exhibit body sizes up to twice the size of their mainland conspecifics. Body size of insular populations is positively correlated with latitude, consistent with thermoregulatory predictions based on Bergmann's rule. Body size is negatively correlated with number of co-occurring mammalian species, confirming an ecological hypothesis of the island rule. The largest rats are found in the temperate zone of New Zealand, as well as on mammalian species-poor islands of Polynesia and the Solomon Islands. Carnivory in the form of predation on nesting seabird colonies seems to promote 1.4- to 1.9-fold body size increases.

2018 ◽  
Vol 92 (5) ◽  
pp. 896-910
Author(s):  
Craig S. Scott ◽  
Anne Weil ◽  
Jessica M. Theodor

AbstractMultituberculates were among the most taxonomically diverse mammals of the early Paleocene, having survived the catastrophic Cretaceous-Paleogene mass extinction and radiating soon thereafter. Although their evolution during the early Paleocene saw the advent of increasingly specialized dentitions, multituberculates generally remained small, rarely exceeding body sizes greater than those of extant rabbits. A conspicuous exception is the Taeniolabidoidea, a primarily North American clade whose members include the largest multituberculates yet discovered. Taeniolabidoidea includes several genera, with one of these,Catopsalis, being speciose and geographically wide ranging. Until recently, the chronological succession ofCatopsalisappeared to document a trend of increasing body size. We report here on a new species ofCatopsalisfrom the early Paleocene of Alberta that violates this trend and suggests that the evolutionary history ofCatopsalisis considerably more complex.Catopsalis kakwanew species is not only the smallest species ofCatopsalis, but is the smallest taeniolabidoid so far discovered, with an estimated body mass between 400 g and 660 g. In contrast to previous studies, we used recently proposed regressions based on lower cheek tooth row length to estimate body masses for North American taeniolabidoids. Our results propose more modest body mass estimates, particularly for the largest taeniolabidoids. The occurrence ofC.kakwan. sp. in the late early Paleocene implies either a significant ghost lineage, or reversal of several characters, including body size, during the latter part of the early Paleocene; the more likely of these scenarios must await a better understanding of the phylogenetic position ofC.kakwan. sp.UUID:http://zoobank.org/66d85345-49b8-4a46-ba6e-a4d4369cb3e0urn:lsid:zoobank.org:pub:AF7A5659-9068-4F2F-A6EC-5522A2BBA4CB


2019 ◽  
Vol 116 (7) ◽  
pp. 2618-2623 ◽  
Author(s):  
Tai Kubo ◽  
Manabu Sakamoto ◽  
Andrew Meade ◽  
Chris Venditti

Terrestrial mammals have evolved various foot postures: flat-footed (plantigrady), tiptoed (digitigrady), and hooved (unguligrady) postures. Although the importance of foot posture on ecology and body size of mammalian species has been widely recognized, its evolutionary trajectory and influence on body size evolution across mammalian phylogeny remain untested. Taking a Bayesian phylogenetic approach combined with a comprehensive dataset of foot postures in 880 extant mammalian species, we investigated the evolutionary history of foot postures and rates of body size evolution, within the same posture and at transitions between postures. Our results show that the common ancestor of mammals was plantigrade, and transitions predominantly occurred only between plantigrady and digitigrady and between digitigrady and unguligrady. At the transitions between plantigrady and digitigrady and between digitigrady and unguligrady, rates of body size evolution are significantly elevated leading to the larger body masses of digitigrade species (∼1 kg) and unguligrade species (∼78 kg) compared with their respective ancestral postures [plantigrady (∼0.75 kg) and digitigrady]. Our results demonstrate the importance of foot postures on mammalian body size evolution and have implications for mammalian body size increase through time. In addition, we highlight a way forward for future studies that seek to integrate morphofunctional and macroevolutionary approaches.


2021 ◽  
Author(s):  
◽  
Colleen Brennan Young

The discovery of small-bodied hominin fossils in 2004 on the island of Flores, Indonesia, unearthed a large debate within biological anthropology. This debate has exemplified that there are questions and research areas that biological anthropologists do not understand about island evolution. To improve understanding on the causes and products of evolution within island areas for biological anthropologists, this dissertation addresses three overarching research areas relevant to the biological anthropology community. The first is an analysis of how primate body sizes vary on islands, with interpretations that are anchored in the evolutionary history of body sizes of primates. Primates that initially evolved body sizes to survive within a frugivorous niche, with elongated life spans to improve survival in unpredictable environments, have body sizes distributed among islands in relation to the presence of absence of these pressures. Smaller islands contain more large, bodied primates overall, whereas larger islands contain more small-bodied ones. Second, an analysis of island fox body size and shape indicates that island foxes have reduced body sizes and divergent skeletal traits compared to mainland, closely related counterparts. Distinct body proportions are likely due to selection because allometric scaling of limb lengths to body mass are divergent for the island fox. Further, the island fox is not a scaled down version of the mainland fox, with limbs decreasing in size at a faster rate compared to the mainland. Last, an investigation on the diversity of two human populations in the Baja California peninsula demonstrates that Amerindians who migrated to and survived in these regions were impacted by ecogeographic pressures in different degrees, likely related to access to resources. Heat-adapted skeletal traits are apparent in both human populations who inhabited this hot desert, but body size is distinct for the two groups. Body size is smaller for individuals with less access to marine resources and increased susceptibility to periods of drought and starvation. Body size is larger for humans with convenient access to oceanic and terrestrial resources. These studies demonstrate that primates, omnivores, and humans are not immune to the effects of insularity as has been suggested. Rather, interpreting body size and shape alterations requires contextualizing the organism with their evolutionary histories and subsequent interactions within the island areas. Body size alterations are the result of shifting selective pressures from competing with other community members to competing with other individuals within a population over finite resources. As such, body shape can also be divergent compared to closely related mainland counterparts due to adaptation to local ecogeographic pressures. Skeletal traits of organisms need to be interpreted in relation to their migratory journeys and adaptation to local ecogeographic pressures within the island. For humans, contextualizing these variables with cultural and behavioral characteristics is imperative to understand a body size response within a sociocultural omnivorous niche.


2009 ◽  
Vol 57 (1) ◽  
pp. 49 ◽  
Author(s):  
S. Fearn ◽  
D. F. Trembath

Two species of large black whip snakes (Demansia vestigiata and D. papuensis) are morphologically and ecologically similar and have broadly overlapping distributions. A long history of taxonomic difficulties has meant that most previous taxonomic and ecological studies comprise composite samples of both taxa. Here, we provide ecological data (body sizes, food habits, reproduction and inferred growth rates) collected from captured and road-killed specimens from a tropical population of D. vestigiata at Townsville, north-eastern Queensland, Australia. Males attain larger body sizes and have longer tails than females. All food items were ectotherms (lizards and frogs). Female reproductive cycles were strongly seasonal. Clutch size is significantly positively related to maternal body size. Egg dimensions, clutch mass and neonatal size are reported. Inferred growth rates indicate that sexual maturation is attained at ~21 months for females.


2015 ◽  
Vol 282 (1810) ◽  
pp. 20150239 ◽  
Author(s):  
Paul A. P. Durst ◽  
V. Louise Roth

The tendency for island populations of mammalian taxa to diverge in body size from their mainland counterparts consistently in particular directions is both impressive for its regularity and, especially among rodents, troublesome for its exceptions. However, previous studies have largely ignored mainland body size variation, treating size differences of any magnitude as equally noteworthy. Here, we use distributions of mainland population body sizes to identify island populations as ‘extremely’ big or small, and we compare traits of extreme populations and their islands with those of island populations more typical in body size. We find that although insular rodents vary in the directions of body size change, ‘extreme’ populations tend towards gigantism. With classification tree methods, we develop a predictive model, which points to resource limitations as major drivers in the few cases of insular dwarfism. Highly successful in classifying our dataset, our model also successfully predicts change in untested cases.


2021 ◽  
pp. 1-12
Author(s):  
Carel P. van Schaik ◽  
Zegni Triki ◽  
Redouan Bshary ◽  
Sandra A. Heldstab

Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 585
Author(s):  
Rebecca M. Grimwood ◽  
Edward C. Holmes ◽  
Jemma L. Geoghegan

Rubella virus (RuV) is the causative agent of rubella (“German measles”) and remains a global health concern. Until recently, RuV was the only known member of the genus Rubivirus and the only virus species classified within the Matonaviridae family of positive-sense RNA viruses. Recently, two new rubella-like matonaviruses, Rustrela virus and Ruhugu virus, have been identified in several mammalian species, along with more divergent viruses in fish and reptiles. To screen for the presence of additional novel rubella-like viruses, we mined published transcriptome data using genome sequences from Rubella, Rustrela, and Ruhugu viruses as baits. From this, we identified a novel rubella-like virus in a transcriptome of Tetronarce californica—order Torpediniformes (Pacific electric ray)—that is more closely related to mammalian Rustrela virus than to the divergent fish matonavirus and indicative of a complex pattern of cross-species virus transmission. Analysis of host reads confirmed that the sample analysed was indeed from a Pacific electric ray, and two other viruses identified in this animal, from the Arenaviridae and Reoviridae, grouped with other fish viruses. These findings indicate that the evolutionary history of the Matonaviridae is more complex than previously thought and highlights the vast number of viruses that remain undiscovered.


2012 ◽  
Vol 23 (3) ◽  
pp. 282-292 ◽  
Author(s):  
Vivianne Eilers ◽  
Márcia Divina de Oliveira ◽  
Kennedy Francis Roche

AIM: The present study involved an analysis of the monthly variations in the population densities and body sizes of the different stages of planktonic larvae of the invasive golden mussel (Limnoperna fortunei), in the rivers Paraguay and Miranda; METHODS: The study was carried out between February 2004 and January 2005. Monthly collection of the plankton samples was accompanied by physical, chemical and biological analyses of the water; RESULTS: The Miranda River presented higher values of calcium, pH, alkalinity, conductivity and total phosphorous. Larval density varied from 0-24 individuals.L-1 in the Paraguay River, with a peak in March of 2004, while in the Miranda River, densities varied between 0-9 individuals.L-1 with a peak in February of 2004. No larvae were encountered during the coldest months, May and June. No significant correlations were found between environmental variables and larval density in either river. Only the valved larval stages were recorded. The "D" and veliger forms were most abundant; umbonate larvae were rare in the Miranda River samples. Mean body sizes of "D", veliger and umbonate larval stages were, respectively, 111, 135 and 152 µm, in the Paraguay River, and 112, 134 and 154 µm in the Miranda River. Principal Components Analysis indicated positive relationships between "D" larval stage size and the ratio between inorganic and organic suspended solids, while negative relationships were found between larval size and calcium and chlorophyll-<img border=0 width=7 height=8 src="/img/revistas/alb/2012nahead/ALB_AOP_230307car01.jpg">; CONCLUSIONS: The larvae were recorded in the plankton during most of the year, with the exception of the two colder months. Neither densities nor larval stage body sizes were significantly different between the two rivers. Possible positive effects of food and calcium concentrations on body size were not recorded. This species may be adapted to grow in environments with elevated sediment concentrations.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Valerie Flax ◽  
Chrissie Thakwalakwa ◽  
Lindsay Jaacks ◽  
John Phuka

Abstract Objectives Overweight in mothers and children in sub-Saharan Africa is rapidly increasing and may be related to body size preferences. The objective of this study was to measure mothers’ preferences for their own and their child's body size and how they relate to food choices. Methods We enrolled 271 mothers and their children (6–59 months) in Lilongwe and Kasungu Districts. Based on standard body-mass index and weight-for-height z-score cutoffs, 78 mothers (29%) were normal weight and 193 (71%) were overweight; 120 children (44%) were normal weight and 151 (56%) were overweight. Interviewers used a set of 7 adult female and 7 child body silhouette drawings and a semi-structured question guide to measure mothers’ perceptions of their own and their child's preferred and healthy body sizes and how their preferences affected food choices. We performed chi-squared tests comparing body size perceptions and grouped open-ended responses by weight status. Results Mothers’ selection of silhouettes that represented their body size preferences (67% normal weight, 68% overweight preferred overweight) and perceptions of a healthy body size (96% normal weight, 94% overweight selected overweight as healthy) did not differ by their weight status. A higher percentage of mothers of overweight than normal weight children preferred overweight child body sizes (70% vs. 48%, P = 0.003). Mothers’ perceptions of a healthy child body size (89% normal weight, 94% overweight selected overweight as healthy) did not differ by the child's weight status. To attain a larger body size, mothers said they could eat or feed the child larger quantities or more frequently and increase consumption of fatty/oily foods and drinks (such as sodas, sweetened yoghurt, and milk), but many cannot afford to do this. Conclusions Malawian mothers had strong preferences for overweight body sizes for themselves and mixed preferences for their children. Their desired strategies for increasing weight indicate that body size preferences may drive food choice but could be limited by cost. Funding Sources Drivers of Food Choice (DFC) Competitive Grants Program, funded by the UK Government's Department for International Development and the Bill & Melinda Gates Foundation, and managed by the University of South Carolina, Arnold School of Public Health.


Sign in / Sign up

Export Citation Format

Share Document