The effect of particle height on the analysis of precipitates in alloy foils

Author(s):  
Robert M. Allen

The relative height of small second-phase particles within a thin alloy foil can have a significant effect on the characteristic x-ray signal obtained from the particle during microanalysis in a STEM. Figure 1 illustrates this for the case where the energy dispersive x-ray detector attached to the STEM views the sample on the side entered by the incident electron beam. If the particle is located below the top foil surface, as in Fig. 1a, beam spreading may reduce the total current striking the particle, thereby reducing the generated signal. The x-ray spectrun of the particle may be further reduced and distorted by matrix absorption en route to the detector. Clearly the optimal position for microanalysis is shown in Fig. 1b: The particle to be analyzed should be on the sample surface facing the beam and x-ray detector.These considerations were demonstrated in an experiment performed on a sample of Alloy 800, a high-allqy austenitic steel. The STEM used was a JEQL 200CX operated at 200kV. The second phase particles (Ti-carbides in this case) in the Alloy 800 electropolished at different rates from the matrix during sample preparation. Those particles located at the surface of the foil after thinning therefore produced surface relief and could be imaged using the secondary electron detector on the STEM. Figure 2 shows a mixed secondary electron/transmitted electron image of the TiC particles analyzed for this experiment.

Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Author(s):  
M. Raghavan ◽  
J. Y. Koo ◽  
J. W. Steeds ◽  
B. K. Park

X-ray microanalysis and Convergent Beam Electron Diffraction (CBD) studies were conducted to characterize the second phase particles in two commercial aluminum alloys -- 7075 and 7475. The second phase particles studied were large (approximately 2-5μm) constituent phases and relatively fine ( ∼ 0.05-1μn) dispersoid particles, Figures 1A and B. Based on the crystal structure and chemical composition analyses, the constituent phases found in these alloys were identified to be Al7Cu2Fe, (Al,Cu)6(Fe,Cu), α-Al12Fe3Si, Mg2Si, amorphous silicon oxide and the modified 6Fe compounds, in decreasing order of abundance. The results of quantitative X-ray microanalysis of all the constituent phases are listed in Table I. The data show that, in almost all the phases, partial substitution of alloying elements occurred resulting in small deviations from the published stoichiometric compositions of the binary and ternary compounds.


2012 ◽  
Vol 715-716 ◽  
pp. 346-353
Author(s):  
H. Paul ◽  
T. Baudin ◽  
K. Kudłacz ◽  
A. Morawiec

The objective of this study was to determine the effect of deformation mode on recrystallization behavior of severely deformed material. Commercial purity AA3104 aluminum alloy was deformed via high pressure torsion and equal channel angular pressing to different strains and then annealed to obtain the state of partial recrystallization. The microstructure and the crystallographic texture were analysed using scanning and transmission electron microscopes equipped with orientation measurement facilities. The nucleation of new grains was observed in bulk recrystallized samples and during in-situ recrystallization in the transmission microscope. Irrespective of the applied deformation mode, a large non-deformable second phase particles strongly influenced strengthening of the matrix through deformation zones around them. It is known that relatively high stored energy stimulates the nucleation of new grains during the recrystalization. In most of the observed cases, the growth of recrystallized grains occurred by the coalescence of neighboring subcells. This process usually led to nearly homogeneous equiaxed grains of similar size. The diameter of grains in the vicinity of large second phase particles was only occasionally significantly larger than the average grain size. Large grains were most often observed in places far from the particles. TEM orientation mapping from highly deformed zones around particles showed that orientations of new grains were not random and only strictly defined groups of orientations were observed.


2007 ◽  
Vol 558-559 ◽  
pp. 777-780 ◽  
Author(s):  
Taiki Morishige ◽  
Masato Tsujikawa ◽  
Sung Wook Chung ◽  
Sachio Oki ◽  
Kenji Higashi

Friction stir processing (FSP) is the effective method of the grain refinement for light metals. The aim of this study is to acquire the fine grained bulk Mg-Y-Zn alloy by ingot metallurgy route much lower in cost. Such bulk alloy can be formed by the superplastic forging. The microstructure of as-cast Mg-Y-Zn alloy was dendrite. The dendrite arm spacing was 72.5 [(m], and there are the lamellar structures in it. FSP was conducted on allover the plate of Mg-Y-Zn alloy for both surfaces by the rotational tool with FSW machine. The stirring passes were shifted half of the probe diameter every execution. The dendrite structures disappeared after FSP, but the lamellar structure could be observed by TEM. The matrix became recrystallized fine grain, and interdendritic second phase particles were dispersed in the grain boundaries. By using FSP, cast Mg-Y-Zn alloy could have fine-grained. This result compared to this material produced by equal channel angular extrusion (ECAE) or rapid-solidified powder metallurgy (RS P/M). As the result, as-FSPed material has the higher hardness than materials produced by the other processes at the similar grain size.


1996 ◽  
Vol 460 ◽  
Author(s):  
Xavier Pierron ◽  
Ian Baker

ABSTRACTThe structure and composition of a previously unreported second phase were investigated in both Fe-43A1–0.12B and Fe-48Al-0.12B alloys. Energy dispersive x-ray and electron energy loss spectroscopy showed that the precipitates contained boron and were enriched in iron. This new boride phase had a tetragonal symmetry, with at = 4aB2 and ct = aB2, where aB2 is the matrix lattice parameter. The effect of iron content and heat treatments on the microstructure of those two boron-doped FeAl alloys are discussed.


2016 ◽  
Vol 22 (4) ◽  
pp. 808-813 ◽  
Author(s):  
Chandrashekara S. Kaira ◽  
Carl R. Mayer ◽  
V. De Andrade ◽  
Francesco De Carlo ◽  
Nikhilesh Chawla

AbstractThree-dimensional (3D) nondestructive microstructural characterization was performed using full-field transmission X-ray microscopy on an Sn-rich alloy, at a spatial resolution of 60 nm. This study highlights the use of synchrotron radiation along with Fresnel zone plate optics to perform absorption contrast tomography for analyzing nanoscale features of fine second phase particles distributed in the tin matrix, which are representative of the bulk microstructure. The 3D reconstruction was also used to quantify microstructural details of the analyzed volume.


2011 ◽  
Vol 284-286 ◽  
pp. 2414-2419 ◽  
Author(s):  
Jun Cai Zhang ◽  
Cheng Chang Jia

In this paper, nano-Ti3SiC2/MoSi2 composite, whose second phase was 20-150nm, was in situ prepared by mechanical activation (MA) and SPS process with the quaternary powers of Mo, Si, Ti, and C. The results showed that: (1) matrix MoSi2 has strong repulsion to other elements, which leads to more second-phase particles inside the matrix rather than on the matrix surface; (2) matrix MoSi2 has strong restriction on the growing of the second phase, which makes the particle diameter of the second phase inside the matrix only in 200 nm around, while that over the surface reaches to 800 nm around.


1978 ◽  
Vol 100 (2) ◽  
pp. 195-199 ◽  
Author(s):  
W. J. Mills

The elastic-plastic fracture toughness (JIc) response of precipitation strengthened Alloy A-286 has been evaluated by the multi-specimen R-curve technique at room temperature, 700 K (800°F) and 811 K (1000°F). The fracture toughness of this iron-base superalloy was found to decrease with increasing temperature. This phenomenon was attributed to a reduction in the materials’s strength and ductility at elevated temperatures. Electron fractographic examination revealed that the overall fracture surface micromorphology, a duplex dimple structure coupled with stringer troughs, was independent of test temperature. In addition, the fracture resistance of Alloy A-286 was found to be weakened by the presence of a nonuniform distribution of second phase particles throughout the matrix.


1993 ◽  
Vol 20 (1-4) ◽  
pp. 125-140 ◽  
Author(s):  
F. Habiby ◽  
F. J. Humphreys

Single crystals and polycrystals of aluminium containing non-deformable second-phase particles of silicon, have been deformed, and the resultant structures investigated by microscopy and by X-ray and microtexture techniques. The particle size is found to influence the scale of the deformation bands formed, and there is evidence that particles may affect the nucleation of these bands. The deformed materials were recrystallized, and the effect of particle stimulated nucleation on the weakening of the rolling texture is discussed with reference to a computer simulation. In contrast, the recrystallization texture of particle-containing single crystals deformed on only two slip systems is sharp, and it is shown that the texture components are consistent with plasticity theory.


2013 ◽  
Vol 753 ◽  
pp. 221-224 ◽  
Author(s):  
Krzysztof Sztwiertnia ◽  
Magdalena Bieda ◽  
Anna Korneva

In situ orientation mapping using TEM and calorimetric measurements were carried out to investigate the annealing behavior of cold-rolled 6013 aluminum alloy. The recrystallization of the material can be considered to be a number of processes that correspond to two separate stored energy release peaks. In the temperature range of the peak 1, the deformation zones around the large second-phase particles acted as sites for particle-stimulated nucleation. In the matrix, at the same time, some elongation of grains occurred. The elongated matrix grains appeared because of the reduction of the dislocation density and the annihilation of some low-angle grain boundaries between chains of subgrains lying in layers parallel to the sheet plane. The matrix processes in this temperatures range can be considered forms of continuous recrystallization. The matrix high-angle grain boundaries started to migrate at the temperature range of the peak 2. They moved mostly in the direction normal to the sheet plane. Heating of the sample for an appropriate time at those temperatures resulted in the complete discontinuous recrystallization of the material. The recrystallized microstructure was dominated now by elongated grains, which were a few times thicker than those obtained by annealing at the temperatures of the peak 1.


Sign in / Sign up

Export Citation Format

Share Document