Some Unique Features in Compound Eyes of Two Isopods

Author(s):  
Paula Nemanic

I have observed certain unique features in the ultrastructure of the compound eyes of the terrestrial isopod crustaceans Porcellio scaber and Armadillidium vulgare, using both scanning and transmission electron microscopy.Only about twenty ommatidia, arranged into four rows, constitute an eye, giving the organ the appearance of a cluster of grapes (Fig. 1). A few trichoid sensilla are interspersed between the ommatidia.The dioptric apparatus of each ommatidium is composed of a biconvex, cuticular lens and an underlying spherical crystalline cone. In these isopods each crystalline cone is the secretion of only two cells (Fig. 2), rather than four as in most malacostracans. The suture line between the two cone hemispheres is always parallel to the long axis of the ommatidium.

2007 ◽  
Vol 73 (17) ◽  
pp. 5566-5573 ◽  
Author(s):  
Rok Kostanjšek ◽  
Jasna Štrus ◽  
Gorazd Avguštin

ABSTRACT Pointed, rod-shaped bacteria colonizing the cuticular surface of the hindgut of the terrestrial isopod crustacean Porcellio scaber (Crustacea: Isopoda) were investigated by comparative 16S rRNA gene sequence analysis and electron microscopy. The results of phylogenetic analysis, and the absence of a cell wall, affiliated these bacteria with the class Mollicutes, within which they represent a novel and deeply branched lineage, sharing less than 82.6% sequence similarity to known Mollicutes. The lineage has been positioned as a sister group to the clade comprising the Spiroplasma group, the Mycoplasma pneumoniae group, and the Mycoplasma hominis group. The specific signature sequence was identified and used as a probe in in situ hybridization, which confirmed that the retrieved sequences originate from the attached rod-shaped bacteria from the hindgut of P. scaber and made it possible to detect these bacteria in their natural environment. Scanning and transmission electron microscopy revealed a spherically shaped structure at the tapered end of the rod-shaped bacteria, enabling their specific and exclusive attachment to the tip of the cuticular spines on the inner surface of the gut. Specific adaptation to the gut environment, as well as phylogenetic positioning, indicate the long-term association and probable coevolution of the bacteria and the host. Taking into account their pointed, rod-shaped morphology and their phylogenetic position, the name “Candidatus Bacilloplasma” has been proposed for this new lineage of bacteria specifically associated with the gut surface of P. scaber.


1977 ◽  
Vol 67 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Mary Behan ◽  
M. F. Ryan

AbstractThe ovipositor of Psila rosae (F.) comprises abdominal segments seven, eight and nine, the latter with well-defined tergite, sternite and anal cerci. Approximately 110 trichoid sensilla are located on the ovipositor. The ovipositor of Delia brassicae (Wied.), comprising abdominal segments six, seven, eight and nine, has a well-defined sternite on segment eight, with a tergite, sternite and cerci on segment nine. Approximately 245 trichoid sensilla are located on the ovipositor, in addition to 20 styloconic-type and four basiconic-type sensilla. These extra sensilla may enhance chemical discrimination, and thus host-finding, by D. brassicae. Transmission electron microscopy was used to reconstruct a trichoid sensillum, probably a mechanoreceptor, on the cerci of D. brassicae.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Sign in / Sign up

Export Citation Format

Share Document