scholarly journals Determination of the structural aspects of favored grain boundary reaction sites

Author(s):  
Ronald Gronsky ◽  
Gareth Thomas

Of the techniques which have been employed in the study of grain boundary precipitation reactions, none have demonstrated sufficient resolution to directly reveal the structural characteristics of active nucleation sites. This information is vital since many existing interpretations of conventional TEM data are in conflict.The present paper describes an application of high resolution electron microscopy which distinguishes atomic level details in both the boundary and growth front regions of grain boundary precipitates, and indicates the structure and mechanisms responsible for enhanced reaction kinetics.Experiments were performed on an Al-9.5 at.% Zn alloy aged for 30 mins, at 180°C to encourage heterogeneous nucleation at grain boundaries. Two examples of early stage grain boundary precipitates are shown in Fig. 1, both of which have been nucleated in the lower grain. It is seen that in (b) the precipitate is much more sharply faceted than in (a). Notably the orientation of the grain boundary plane is very near to that of the close-packed {111} matrix planes of the lower grain for precipitate (b), whereas the boundary is sharply inclined to {111} for precipitate (a).

2005 ◽  
Vol 20 (6) ◽  
pp. 1551-1562 ◽  
Author(s):  
H. Hofmeister ◽  
G.L. Tan ◽  
M. Dubiel

The structural characteristics of silver nanoparticles embedded in glass by various routes of fabrication were studied in detail using high-resolution electron microscopy to find out if they are influenced by interaction with the surrounding glass matrix. Besides the formation conditions, the strength of the interaction between metal and glass governs the size-dependent changes of lattice spacings in such nanoparticles. However, determination of these changes is not straightforward because of complicated particle configurations and the interference nature of the lattice imaging technique. Imaging of lattice plane fringes and careful diffractogram analysis allowed the exclusion of any kind of tetragonal lattice distortion or transformation to hexagonal lattice type that may be deduced at first sight. Instead, the formation of twin faults in these nanoparticles turned out to be the essential structural feature and the main source of confusion about the lattice structure observed. The variety of particle forms is comparable to particles supported on oxide carriers. It is composed of single-crystalline particles of nearly cuboctahedron shape, particles containing single twin faults, multiple twinned particles containing parallel twin lamellae, and multiple twinned particles composed of cyclic twinned segments arranged around axes of 5-fold symmetry. The more twin planes involved in the particle composition, the more complicated is the interpretation of lattice spacings and lattice fringe patterns due to superposition of several twin segments.


Author(s):  
W. Krakow ◽  
D. A. Smith

The successful determination of the atomic structure of [110] tilt boundaries in Au stems from the investigation of microscope performance at intermediate accelerating voltages (200 and 400kV) as well as a detailed understanding of how grain boundary image features depend on dynamical diffraction processes variation with specimen and beam orientations. This success is also facilitated by improving image quality by digital image processing techniques to the point where a structure image is obtained and each atom position is represented by a resolved image feature. Figure 1 shows an example of a low angle (∼10°) Σ = 129/[110] tilt boundary in a ∼250Å Au film, taken under tilted beam brightfield imaging conditions, to illustrate the steps necessary to obtain the atomic structure configuration from the image. The original image of Fig. 1a shows the regular arrangement of strain-field images associated with the cores of ½ [10] primary dislocations which are separated by ∼15Å.


Author(s):  
E. Sukedai ◽  
M. Shimoda ◽  
A. Fujita ◽  
H. Nishizawa ◽  
H. Hashimoto

ω-phase particles formed in β-titanium alloys (bcc structure) act important roles to their mechanical properties such as ductility and hardness. About the ductility, fine ω-phase particles in β–titanium alloys improve the ductility, because ω-phase crystals becomes nucleation sites of α-phase and it is well known that (β+α) duplex alloys have higher ductility. In the present study, the formation sites and the formation mechanism of ω-phase crystals due to external stress and aging are investigated using the conventional and high resolution electron microscopy.A β-titanium alloy (Til5Mo5Zr) was supplied by Kobe Steel Co., and a single crystal was prepared by a zone refining method. Plates with {110} surface were cut from the crystal and were pressured hydrostatically, and stressed by rolling and tensile testing. Specimens for aging with tensile stress were also prepared from Ti20Mo polycrystals. TEM specimens from these specimens were prepared by a twin-jet electron-polishing machine. A JEM 4000EX electron microscope operated at 400k V was used for taking dark field and HREM images.


Author(s):  
M.J. Kim ◽  
Y.L. Chen ◽  
R.W. Carpenter ◽  
J.C. Barry ◽  
G.H. Schwuttke

The structure of grain boundaries (GBs) in metals, semiconductors and ceramics is of considerable interest because of their influence on physical properties. Progress in understanding the structure of grain boundaries at the atomic level has been made by high resolution electron microscopy (HREM) . In the present study, a Σ=13, (510) <001>-tilt grain boundary in silicon was characterized by HREM in conjunction with digital image processing and computer image simulation techniques.The bicrystals were grown from the melt by the Czochralski method, using preoriented seeds. Specimens for TEM observations were cut from the bicrystals perpendicular to the common rotation axis of pure tilt grain boundary, and were mechanically dimpled and then ion-milled to electron transparency. The degree of misorientation between the common <001> axis of the bicrystal was measured by CBED in a Philips EM 400ST/FEG: it was found to be less than 1 mrad. HREM was performed at 200 kV in an ISI-002B and at 400 kv in a JEM-4000EX.


Author(s):  
Jean-Luc Rouvière ◽  
Alain Bourret

The possible structural transformations during the sample preparations and the sample observations are important issues in electron microscopy. Several publications of High Resolution Electron Microscopy (HREM) have reported that structural transformations and evaporation of the thin parts of a specimen could happen in the microscope. Diffusion and preferential etchings could also occur during the sample preparation.Here we report a structural transformation of a germanium Σ=13 (510) [001] tilt grain boundary that occurred in a medium-voltage electron microscopy (JEOL 400KV).Among the different (001) tilt grain boundaries whose atomic structures were entirely determined by High Resolution Electron Microscopy (Σ = 5(310), Σ = 13 (320), Σ = 13 (510), Σ = 65 (1130), Σ = 25 (710) and Σ = 41 (910), the Σ = 13 (510) interface is the most interesting. It exhibits two kinds of structures. One of them, the M-structure, has tetracoordinated covalent bonds and is periodic (fig. 1). The other, the U-structure, is also tetracoordinated but is not strictly periodic (fig. 2). It is composed of a periodically repeated constant part that separates variable cores where some atoms can have several stable positions. The M-structure has a mirror glide symmetry. At Scherzer defocus, its HREM images have characteristic groups of three big white dots that are distributed on alternatively facing right and left arcs (fig. 1). The (001) projection of the U-structure has an apparent mirror symmetry, the portions of good coincidence zones (“perfect crystal structure”) regularly separate the variable cores regions (fig. 2).


Glassy carbon has been prepared in the shape of disk and fibre by direct pyrolysis of a phenolic resin. Carbonization studies indicate that the unique structure of the final glassy carbon is a direct consequence of the production of very stable aromatic ribbon molecules by the coalescence of phenolic polymer chains at an early stage of pyrolysis. It is shown that molecular orientation induced in the initial polymer before pyrolysis is 'memorized’ to some extent after carbonization. Molecular orientation imposed in this type of carbon is not an intrinsic structural feature, but a physical characteristic which can be varied by the formation process or by extension at high temperatures; there is no essential structural difference apart from preferred orientation between polymeric units or microfibrils in well-oriented carbon fibres and isotropic glassy carbon. High resolution electron microscopy confirms this directly. We thus identify a new class of ‘polymeric carbons’, that consist of intertwined microfibrils comprising stacks of narrow graphitic ribbons. The fibrils are held together with covalent interfibrillar links of strength lower than that in the ribbons themselves. A ribbon structure has been proposed previously by Ruland (1971) for the specific case of high modulus carbon fibre. The structure is elaborated and extended here to cover all polymeric carbons and the steps in its development during carbonization are decisively detailed.


1991 ◽  
Vol 238 ◽  
Author(s):  
Geoffrey H. Campbells ◽  
Wayne E. King ◽  
Stephen M. Foiles ◽  
Peter Gumbsch ◽  
Manfred Rühle

ABSTRACTA (310) twin boundary in Nb has been fabricated by diffusion bonding oriented single crystals and characterized using high resolution electron microscopy. Atomic structures for the boundary have been predicted using different interatomic potentials. Comparison of the theoretical models to the high resolution images has been performed through image simulation. On the basis of this comparison, one of the low energy structures predicted by theory can be ruled out.


1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.


1983 ◽  
Vol 219 (1215) ◽  
pp. 111-117 ◽  

The calcite coccoliths from the alga Emiliania huxleyi (Lohmann) Hay and Mohler have been studied by ultra-high resolution electron microscopy. This paper describes the two different types of structure observed, one in the upper elements, the other in the basal plate, or lower element. The former consisted of small, microdomain structures of 300-500 Å (1 Å = 10 -10 m) in length with no strong orientation. At places along these elements, and particularly in the junction between stem and head pieces, triangular patterns of lattice fringes were observed indicating multiple nucleation sites in the structure. In contrast, the lower element consisted of a very thin single crystalline sheet of calcite which could be resolved into a two dimensional lattice image, shown by a computer program that is capable of simulating electron diffraction patterns and lattice images to be a [421] zone of calcite. A possible mechanism for these growth patterns in the formation of coccoliths is discussed, together with the relevance of such mechanisms to biomineralization generally.


Sign in / Sign up

Export Citation Format

Share Document