Faster turnaround time for TEM by using a multiple-sample approach

Author(s):  
Roger Alvis ◽  
Bryan Tracy

The many advantages of transmission electron microscopy (TEM) over other microscopy techniques areoften offset only by one drawback: slow turnaround time. Because of the fact that the time required to complete a multi-sample analysis is directly proportional to the number of samples submitted, TEM is often not a viable tool to analyze an entire fabrication process run or a multi wafer process development experiment. However, we have developed a technique that has allowed a single person to prepareas many as six cross-sectional TEM samples in one day thereby affording the opportunity for the investigation of an entire experimental matrix in a relatively short time.This improvement in throughput is achieved by our approach to sample preparation which combines features of the Bravman-Sinclair method with the Tripod polishing technique developed by Benedict and wide tool dimpling described by Humiston. In essence, the standard dummy dice of the Bravman techniqueare replaced by "real" device dice which have been thinned to less than 50°m using the Tripod polisher. This type of mechanical back lapping was first suggested by Marcus and Sheng. Our experiments with this type of sample preparation have been applied to both failure analysis and process development applications.

Author(s):  
P. B. Basham ◽  
H. L. Tsai

The use of transmission electron microscopy (TEM) to support process development of advanced microelectronic devices is often challenged by a large amount of samples submitted from wafer fabrication areas and specific-spot analysis. Improving the TEM sample preparation techniques for a fast turnaround time is critical in order to provide a timely support for customers and improve the utilization of TEM. For the specific-area sample preparation, a technique which can be easily prepared with the least amount of effort is preferred. For these reasons, we have developed several techniques which have greatly facilitated the TEM sample preparation.For specific-area analysis, the use of a copper grid with a small hole is found to be very useful. With this small-hole grid technique, TEM sample preparation can be proceeded by well-established conventional methods. The sample is first polished to the area of interest, which is then carefully positioned inside the hole. This polished side is placed against the grid by epoxy Fig. 1 is an optical image of a TEM cross-section after dimpling to light transmission.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2013 ◽  
Vol 19 (6) ◽  
pp. 1542-1553 ◽  
Author(s):  
Nathan D. Burrows ◽  
R. Lee Penn

AbstractDirect imaging of nanoscale objects suspended in liquid media can be accomplished using cryogenic transmission electron microscopy (cryo-TEM). Cryo-TEM has been used with particular success in microbiology and other biological fields. Samples are prepared by plunging a thin film of sample into an appropriate cryogen, which essentially produces a snapshot of the suspended objects in their liquid medium. With successful sample preparation, cryo-TEM images can facilitate elucidation of aggregation and self-assembly, as well as provide detailed information about cells and viruses. This work provides an explanation of sample preparation, detailed examples of the many artifacts found in cryo-TEM of aqueous samples, and other key considerations for successful cryo-TEM imaging.


1998 ◽  
Vol 523 ◽  
Author(s):  
C. Amy Hunt ◽  
Yuhong Zhang ◽  
David Su

AbstractTransmission electron microscopy (TEM) is a useful tool in process evaluation and failure analysis for semiconductor industries. A common focus of semiconductor TEM analyses is metalization vias (plugs) and it is often desirable to cross-section through a particular one. If the cross-sectional plane deviates away from the center of the plug, then the thin adhesion layer around the plug will be blurred by surrounding materials such as the inter-layer dielectric and the plug material. The importance of these constraints, along with the difficulty of precision sample preparation, has risen sharply as feature sizes have fallen to 0.25 μm and below. The suitability of common sample preparation techniques for these samples is evaluated.


1989 ◽  
Vol 147 ◽  
Author(s):  
M. K. El-Ghor ◽  
S. J. Pennycook ◽  
R. A. Zuhr

AbstractShallow junctions were formed in single-crystal Si(100) by implantation of As at energies between 2 and 17.5 keV followed by conventional furnace annealing or by rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (XTEM) showed that defect-free shallow junctions could be formed at temperatures as low as 700 °C by RTA, with about 60% dopant activation. From a comparison of short-time and long-time annealing, it is proposed that surface image forces are responsible for the efficient removal of end-of-range (EOR) dislocation loops


2014 ◽  
Vol 20 (6) ◽  
pp. 1646-1653
Author(s):  
Claire V. Weiss Brennan ◽  
Scott D. Walck ◽  
Jeffrey J. Swab

AbstractA new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.


1987 ◽  
Vol 115 ◽  
Author(s):  
Robert V. Knoell

ABSTRACTThe use of XTEM (cross-sectional TEM) as a diagnostic tool for quality control of device processing has experienced a surge of popularity recently due to the need for better feature resolution and the improvement in equipment and techniques for preparing such samples. As device features shrink below one micrometer, interface morphology and the detection of microstructural defects make TEM a most effective imaging tool. The demand for XTEM is tempered by problems in sample preparation, which impose restraints on turnaround time and image quality, especially for devices utilizing multilevel metallizations. A reliable technique for preparing these devices for XTEM observations, along with helpful hints to integrate into a sample preparation routine, will be presented. This technique reduces turnaround time to about a day and a half per group of samples. The rate of success is high if care is exercised, and all parts of the sample, metallized or not, are electron transparent to produce a clear image with minimized brightness contrast between layers. Finally, micrographs will be presented to illustrate what can be achieved with this technique and what features of interest can be observed for failure analysis determination.


Sign in / Sign up

Export Citation Format

Share Document