scholarly journals Editorial: Basic Biological Aging Research in Canada: Time for Rejuvenation?

Author(s):  
Karl T. Riabowol
2021 ◽  
Vol 14 ◽  
Author(s):  
Yi Wang

Background: Currently, the focus of anti-aging research has been changed from geriatrics to biogerontology. This has taken anti-aging strategies from cost-effective but palliative therapeutics to active, molecular approaches. Outline: Over the years, a large body of basic gerontological research has indicated that the process of biological aging is closely associated with genetic factors. This leads to the development of various gene therapies such as RNA interference technology and results in a subsequent need of translating laboratory achievements into clinical applications. The translation has been a tremendous challenge at this stage with respect to practicality, safety and effectiveness of the genetic manipulation techniques. Objective: This review summarizes the current development of anti-aging strategies and the progress in the translation of laboratory achievements into clinical applications, highlights challenges encountered, and provides a prospective outlook for future anti-aging research.


2021 ◽  
Vol 7 ◽  
pp. 233372142110464
Author(s):  
Trevor Lohman ◽  
Gurinder Bains ◽  
Lee Berk ◽  
Everett Lohman

As healthspan and lifespan research breakthroughs have become more commonplace, the need for valid, practical markers of biological age is becoming increasingly paramount. The accessibility and affordability of biological age predictors that can reveal information about mortality and morbidity risk, as well as remaining years of life, has profound clinical and research implications. In this review, we examine 5 groups of aging biomarkers capable of providing accurate biological age estimations. The unique capabilities of these biomarkers have far reaching implications for the testing of both pharmaceutical and non-pharmaceutical interventions designed to slow or reverse biological aging. Additionally, the enhanced validity and availability of these tools may have increasingly relevant clinical value. The authors of this review explore those implications, with an emphasis on lifestyle modification research, and provide an overview of the current evidence regarding 5 biological age predictor categories: Telomere length, composite biomarkers, DNA methylation “epigenetic clocks,” transcriptional predictors of biological age, and functional age predictors.


Author(s):  
Li Chu ◽  
Yang Fang ◽  
Vivian Hiu-Ling Tsang ◽  
Helene H. Fung

Cognitive processing of social and nonsocial information changes with age. These processes range from the ones that serve “mere” cognitive functions, such as recall strategies and reasoning, to those that serve functions that pertain to self-regulation and relating to others. However, aging and the development of social cognition unfold in different cultural contexts, which may assume distinct social norms and values. Thus, the resulting age-related differences in cognitive and social cognitive processes may differ across cultures. On the one hand, biological aging could render age-related differences in social cognition universal; on the other hand, culture may play a role in shaping some age-related differences. Indeed, many aspects of cognition and social cognition showed different age and culture interactions, and this makes the study of these phenomena more complex. Future aging research on social cognition should take cultural influences into consideration.


Author(s):  
Syed Ashiqur Rahman ◽  
Peter Giacobbi ◽  
Lee Pyles ◽  
Charles Mullett ◽  
Gianfranco Doretto ◽  
...  

Abstract Modern machine learning techniques (such as deep learning) offer immense opportunities in the field of human biological aging research. Aging is a complex process, experienced by all living organisms. While traditional machine learning and data mining approaches are still popular in aging research, they typically need feature engineering or feature extraction for robust performance. Explicit feature engineering represents a major challenge, as it requires significant domain knowledge. The latest advances in deep learning provide a paradigm shift in eliciting meaningful knowledge from complex data without performing explicit feature engineering. In this article, we review the recent literature on applying deep learning in biological age estimation. We consider the current data modalities that have been used to study aging and the deep learning architectures that have been applied. We identify four broad classes of measures to quantify the performance of algorithms for biological age estimation and based on these evaluate the current approaches. The paper concludes with a brief discussion on possible future directions in biological aging research using deep learning. This study has significant potentials for improving our understanding of the health status of individuals, for instance, based on their physical activities, blood samples and body shapes. Thus, the results of the study could have implications in different health care settings, from palliative care to public health.


Science ◽  
1967 ◽  
Vol 158 (3807) ◽  
pp. 1394-1394
Author(s):  
Bernard L. Strehler

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S348-S348
Author(s):  
Daniel W Belsky

Abstract Our aging global population presents a new set of challenges for public health. Individual-disease focused models are becoming outmoded as geriatricians recognize multimorbidity and frailty as the central challenges in preserving health for older adults. Evidence from research into the biology of aging suggests that a set of common cellular-level processes underpin decline in system integrity that induces vulnerability to disease across multiple organ systems, including the brain. In parallel, research in life-course gerontology indicates that the roots of aging-related decline in system integrity extend from early life and encompass histories of social, psychological, and biochemical exposures. The research presented in this symposium aims to integrate these emerging paradigms in aging research by mapping connections among measures of aging in the brain and body and social, psychological, and nutrition exposures. Our symposium focuses on (1) links between social-psychological determinants of health and biological aging in the brain and body; and (2) social and behavioral protective factors that may buffer emerging biological risk in aging. The overarching goal of this symposium is to introduce an approach to gerontology that integrates geroscience with life-course social and psychiatric epidemiology to advance understanding of cognitive aging and functional decline, and ultimately identify novel interventions to extend healthy lifespan.


2020 ◽  
Vol 22 (1) ◽  
pp. 175
Author(s):  
Hiroshi Kondoh ◽  
Masahiro Kameda ◽  
Mitsuhiro Yanagida

Diversity is observed in the wave of global aging because it is a complex biological process exhibiting individual variability. To assess aging physiologically, markers for biological aging are required in addition to the calendar age. From a metabolic perspective, the aging hypothesis includes the mitochondrial hypothesis and the calorie restriction (CR) hypothesis. In experimental models, several compounds or metabolites exert similar lifespan-extending effects, like CR. However, little is known about whether these metabolic modulations are applicable to human longevity, as human aging is greatly affected by a variety of factors, including lifestyle, genetic or epigenetic factors, exposure to stress, diet, and social environment. A comprehensive analysis of the human blood metabolome captures complex changes with individual differences. Moreover, a non-targeted analysis of the whole blood metabolome discloses unexpected aspects of human biology. By using such approaches, markers for aging or aging-relevant conditions were identified. This information should prove valuable for future diagnosis or clinical interventions in diseases relevant to aging.


2020 ◽  
pp. 1-11 ◽  
Author(s):  
S. Guyonnet ◽  
Y. Rolland ◽  
C. Takeda ◽  
P.-J. Ousset ◽  
I. Ader ◽  
...  

Background: The Geroscience field focuses on the core biological mechanisms of aging, which are involved in the onset of age-related diseases, as well as declines in intrinsic capacity (IC) (body functions) leading to dependency. A better understanding on how to measure the true age of an individual or biological aging is an essential step that may lead to the definition of putative markers capable of predicting healthy aging. Objectives: The main objective of the INStitute for Prevention healthy agIng and medicine Rejuvenative (INSPIRE) Platform initiative is to build a program for Geroscience and healthy aging research going from animal models to humans and the health care system. The specific aim of the INSPIRE human translational cohort (INSPIRE-T cohort) is to gather clinical, digital and imaging data, and perform relevant and extensive biobanking to allow basic and translational research on humans. Methods: The INSPIRE-T cohort consists in a population study comprising 1000 individuals in Toulouse and surrounding areas (France) of different ages (20 years or over - no upper limit for age) and functional capacity levels (from robustness to frailty, and even dependency) with follow-up over 10 years. Diversified data are collected annually in research facilities or at home according to standardized procedures. Between two annual visits, IC domains are monitored every 4-month by using the ICOPE Monitor app developed in collaboration with WHO. Once IC decline is confirmed, participants will have a clinical assessment and blood sampling to investigate markers of aging at the time IC declines are detected. Biospecimens include blood, urine, saliva, and dental plaque that are collected from all subjects at baseline and then, annually. Nasopharyngeal swabs and cutaneous surface samples are collected in a large subgroup of subjects every two years. Feces, hair bulb and skin biopsy are collected optionally at the baseline visit and will be performed again during the longitudinal follow up. Expected Results: Recruitment started on October 2019 and is expected to last for two years. Bio-resources collected and explored in the INSPIRE-T cohort will be available for academic and industry partners aiming to identify robust (set of) markers of aging, age-related diseases and IC evolution that could be pharmacologically or non-pharmacologically targetable. The INSPIRE-T will also aim to develop an integrative approach to explore the use of innovative technologies and a new, function and person-centered health care pathway that will promote a healthy aging.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 682-682
Author(s):  
Bohan Zhang ◽  
David Lee ◽  
Alexander Tyshkovskiy ◽  
Akshay Bareja ◽  
Csaba Kerepesi ◽  
...  

Abstract Heterochronic parabiosis is a powerful rejuvenation model in aging research. Due to limitations in the duration of blood sharing and/or physical attachment, it is currently unclear if parabiosis retards the molecular signatures of aging or affects healthspan/lifespan in the mouse. Here, we describe a long-term heterochronic parabiosis model, which appears to slow down the aging process. We observed a “deceleration” of biological age based on molecular aging biomarkers estimated with DNA methylation clock and RNA-seq signature analysis. The slowing of biological aging was accompanied by systemic amelioration of aging phenotypes. Consistent with these findings, we found that aged mice, which underwent heterochronic parabiosis, had an increased healthspan and lifespan. Overall, our study re-introduces a prolonged parabiosis and detachment model as a novel rejuvenation therapy, suggesting that a systemic reset of biological age in old organisms can be achieved through the exposure to young environment.


Sign in / Sign up

Export Citation Format

Share Document