A semi-empirical asymmetry function for X-ray diffraction peak profiles

1995 ◽  
Vol 10 (3) ◽  
pp. 204-206 ◽  
Author(s):  
P. Riello ◽  
P. Canton ◽  
G. Fagherazzi

A new semi-empirical approximation for the asymmetry function to be used in the X-ray Rietveld analysis has resulted in lower values of the so-called goodness-of-fit index, defined as S = Rwp/Rexp, where Rwp is the R-weighted pattern and Rexp is the R-expected [R. A. Young, The Rietveld Method (Oxford U.P., Oxford, 1993)], with respect to the corresponding values obtained with the classical approximation used by Rietveld in his fundamental paper. A comparing test of the two asymmetry functions was carried out for the cubic Y2O3 and for αAl2O3 using either pseudo-Voigt or Pearson VII symmetrical functions and two diffractometers. As in the case of the Rietveld approximation, the present one, which employs an exponential function, is optimized using only one fitting parameter. Experimentally, the asymmetry can be considerably diminished by using Soller slits with a small opening angle (≤2°).

2018 ◽  
Vol 6 (2) ◽  
pp. 171
Author(s):  
Ruliana Febrianti ◽  
Firda Herlina ◽  
Muhammad Saukani

At least 13 million tons of kaolin claystone lie in several regencies of South Kalimantan covering Banjar, Tapin, Hulu Sungai Utara and Kotabaru regencies. This paper reports an attempt to explore their crystalline state characteristics, projecting their potential use for geopolymer. Sungai Tabuk, Cintapuri and Tatakan, due to their largest kaolin claystone deposits, were chosen as the sampling sites. The kaolin samples were prepared by syphoning method prior to X-ray diffraction (XRD) characterizations in determining their crystalline phases. X’Pert HighScore Plus and Rietica software were respectively responsible for the qualitative and quantitative phase analyses. The qualitative analysis used search and match method at peak position and peak height between measured and calculated diffraction patterns. Our study revealed the existence of two main phases in the sample, i.e. quartz (SiO2) and kaolinite (Al2Si2O5(OH)4). In addition, the Quantitative analysis used the Rietveld method with the least squares method approach. Rietveld refinement was based on a goodness of fit score of less than 4% by minimizing the difference in the character of the diffraction pattern (position, height, width and peak shape) between the observed and the calculated XRD patterns. The Rietveld quantitative analysis shows, Tatakan is an area with kaolinite-richest deposit (±84%), followed by Cintapuri (±76%) and Tabuk (±70%); quartz is found in reverse.


2008 ◽  
Vol 368-372 ◽  
pp. 1187-1189
Author(s):  
Xu Ran ◽  
Jun Guo Ran ◽  
Li Gou ◽  
Ji Yong Chen ◽  
Jiao Min Luo

The crystalline structures of B-type carbonated hydroxyapatite (CHA) powders sintered at 700, 900 and 1100°C, respectively, were studied by Rietveld analysis of powder X-ray diffraction (XRD) data. A series of structure parameters, including lattice parameters (a and c), bond length and the distortion index of PO4 tetrahedron (Dind) were calculated by Rietveld method to characterize the fine structure of CHA. The broadening effect of XRD reflections was separated to calculate the micro-strain and crystalline size. The results showed that CHA become more stable with the increase of sintering temperature, but the CO3 2- is almost lost at temperature of 1100°C. The quantitative results about crystal structure of CHA based on crystalline structure simulated by Rietveld method are obtained.


Cerâmica ◽  
2016 ◽  
Vol 62 (361) ◽  
pp. 1-8 ◽  
Author(s):  
J. L. Alves ◽  
A. E. Zanini ◽  
M. E. de Souza ◽  
M. L. F. Nascimento

Abstract Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitória da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8) μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale.


2012 ◽  
Vol 27 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Joannie Martin ◽  
Martin Beauparlant ◽  
Jacques Lesage ◽  
Huu Van Tra

Crystalline silica is known for its health hazards, and since 1997 has been listed as Group 1, Carcinogenic to Humans, by the International Agency for Research on Cancer. This issue is particularly important in the industrial environment, and there is still no method that allows quantification of the different polymorphs of crystalline silica. Many analytical methods have been proposed, and the major problem in almost all cases is attributable to the very large variety of matrixes encountered. This study evaluates the potential of X-ray diffraction techniques and an automated Rietveld analysis in order to overcome this problem and to adapt the quantitative analysis of quartz, the most prevalent crystalline silica polymorph, to routine analysis in the health and safety environment. Matrix simulations are done and many parameters are optimized. Sample preparation, the acquisition program, pattern treatment, and Rietveld refinement are evaluated, and a general procedure is determined. Automation of Rietveld refinement leads to a significant reduction in analysis time, but cannot be applied to every type of sample.


1993 ◽  
Vol 333 ◽  
Author(s):  
T.J. White ◽  
H. Mitamura

ABSTRACTPowder X-ray diffraction patterns were collected from three titanate waste forms - a calcine powder, a prototype ceramic without waste, and a ceramic containing 10 wt% JW-A simulated waste - and interpreted quantitatively using the Rietveld method. The calcine consisted of fluorite, pyrochlore, rutile, and amorphous material. The prototype waste form contained rutile, hollandite, zirconolite and perovskite. The phase constitution of the JW-A ceramic was freudenbergite, loveringite, hollandite, zirconolite, perovskite and baddeleyite. Procedures for the collection of X-ray data are described, as are assumptions inherent in the Rietveld approach. A selection of refined crystal data are presented.


2007 ◽  
Vol 40 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Apurba Kanti Deb ◽  
Partha Chatterjee ◽  
Siba Prasad Sen Gupta

α-Al2O3prepared by combustion technique was ball-milled in a planetary ball-mill for several hours. A detail microstructural characterization of the ball-milled samples was performed by X-ray line broadening analysis. X-ray diffraction patterns from the milled materials showed super-Lorentzian peak shapes for the α-Al2O3peak profiles, attributed to a bimodal size distribution of the α-Al2O3crystallites, one type of crystallites having spherical and the other having cylindrical morphology. Rietveld analysis using two different phase fractions of α-Al2O3with different microstructural features yielded a low goodness-of-fit of the X-ray data, indicating the suitability of the assumed model.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Jiba N. Dahal ◽  
Kalangala Sikkanther Syed Ali ◽  
Sanjay R. Mishra

Intermetallic compounds of Dy2Fe16Ga1−xNbx (x = 0.0 to 1.00) were synthesized by arc melting. Samples were investigated for structural, magnetic, and hyperfine properties using X-ray diffraction, vibration sample magnetometer, and Mossbauer spectrometer, respectively. The Rietveld analysis of room temperature X-ray diffraction data shows that all the samples were crystallized in Th2Fe17 structure. The unit cell volume of alloys increased linearly with an increase in Nb content. The maximum Curie temperature Tc ~523 K for x = 0.6 sample is higher than Tc = 153 K of Dy2Fe17. The saturation magnetization decreased linearly with increasing Nb content from 61.57 emu/g for x = 0.0 to 42.46 emu/g for x = 1.0. The Mössbauer spectra and Rietveld analysis showed a small amount of DyFe3 and NbFe2 secondary phases at x = 1.0. The hyperfine field of Dy2Fe16Ga1−xNbx decreased while the isomer shift values increased with the Nb content. The observed increase in isomer shift may have resulted from the decrease in s electron density due to the unit cell volume expansion. The substantial increase in Tc of thus prepared intermetallic compounds is expected to have implications in magnets used for high-temperature applications.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


Sign in / Sign up

Export Citation Format

Share Document