Comparison of alternative farming systems. I. Infiltration techniques

1993 ◽  
Vol 8 (1) ◽  
pp. 15-20 ◽  
Author(s):  
S.D. Logsdon ◽  
J.K. Radke ◽  
D.L. Karlen

AbstractQuantitative data are needed to understand how alternative farming practices affect surface infiltration of water and associated surface soil properties. We used a rainfall simulator, double ring infiltrometer, small single ring infiltrometers, and tension infiltrometers to measure water infiltration for Clarion loam (fine-loamy, mixed, mesic Typic Hapludoll) and for Webster silty clay loam (fine-loamy, mixed, mesic Typic Haplaquoll) soils located on a conventionally-managed and an alternatively-managed farm in central Iowa. Steady-state measurements suggested that infiltration rates were somewhat higher for the alternative farming system. Bulk densities were sometimes lower, and volume of large pores was a little higher for the alternative farming system. Small single rings were more reproducible than rainfall simulators or double ring infiltrometers, and data trends were the same as for rainfall simulators.

Soil Research ◽  
1977 ◽  
Vol 15 (1) ◽  
pp. 83 ◽  
Author(s):  
AK Sharda

Studies were conducted on soil columns of a silty clay loam packed at bulk densities of 1200, 1300 and 1400 kg/m3 to evaluate the influence of soil bulk density on water infiltration in the horizontal direction. Soil water diffusivity values were obtained by reversing the iterative procedure of Philip. A reduction to less than 25% in soil water diffusivity occurred near saturation with the increase in soil bulk density, but the influence of soil bulk density decreased with the decrease in relative water content. Lengths of infiltration, cumulative influx and infiltration rates also reduced markedly with the increase in soil bulk density from 1200 kg/m to 1400 kg/m3.


2020 ◽  
Vol 5 (2) ◽  
pp. 127-132
Author(s):  
Yuriansyah Yuriansyah ◽  
Dulbari Dulbari ◽  
Hery Sutrisno ◽  
Arief Maksum

Excessive use of inorganic chemicals results in adverse impacts on land and plants. In the midst of the community, there is anxiety about the high content of pesticide residues in agricultural products. There is a need to develop alternative farming systems that are able to produce quantities and quality of healthy products in a sustainable manner. One agricultural system that supports the concept is the organic farming system. The basic principles of organic farming are: (1) Keeping the ecosystem healthy, (2) Applying the principle of efficiency to the cultivation system, (3) Conducting production activities with the concept of sustainable agriculture, (4) Producing pesticide-free products, and (6) Maintaining environmental sustainability. Food Crop Production Study Program Lampung State Polytechnic makes Organic Agriculture as one of the leading competencies for its graduates. The establishment of the Organic Agriculture Business Unit on campus will increase student competencies, foster entrepreneurship, be a place for competency internships, and as an independent source of income.


1988 ◽  
Vol 3 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Thomas L. Dobbs ◽  
Mark G. Leddy ◽  
James D. Smolik

AbstractResults of calculations on the economic potential for alternative (low input, sustainable) farming systems in a small grain-row crop region of the Northern Plains are reported. Two sets of alternative farming systems, in which no chemical fertilizers or herbicides are used, are compared with various conventional and reduced till systems. In Farming Systems Study I (FSS1), an alternative rotation consisting of oats, alfalfa, soybeans, and corn is compared with conventional and ridge till rotation systems composed of corn, soybeans, and spring wheat. In Farming Systems Study II (FSS2), three systems with an emphasis on small grains are compared. An alternative system rotation consisting of oats, sweet clover, soybeans, and spring wheat is compared with conventional and minimum till rotation systems comprised of soybeans, spring wheat, and barley. Results of baseline economic analyses show that alternative farming systems can be competitive with more conventional systems in at least some situations. The alternative systems entail markedly lower direct costs, and the alternative system in FSS2 has approximately the same net returns as the comparable conventional and minimum till systems. The FSS1 alternative system has positive but somewhat lower net returns than the comparable conventional and ridge till systems. Sensitivity analyses were conducted with alternative system crop yields, chemical fertilizer and herbicide prices, and varying assumptions about future Federal farm program support levels and acreage set aside requirements. The yield sensitivity analyses show that one alternative farming system requires yields about 5–10 percent above those of the comparable conventional system to produce the same net returns. However, the other alternative system is competitive with a conventional system even with yields 5 percent lower. Analyses varying chemical fertilizer and herbicide prices reveal that the alternative farming system in FSS1 becomes competitive with more conventional systems when fertilizer and herbicide prices rise by 50 percent. The alternative farming system in FSS2 is already competitive at current fertilizer and herbicide prices. In some cases, sensitivity analyses with Federal farm program provisions indicate that reductions in farm program benefits increase the economic competitiveness of alternative farming systems. However, important exceptions occur. Results indicate that not only the level of future farm program benefits, but also the form of program provisions and compliance requirements, will affect the relative competitiveness of alternative farming systems.


1993 ◽  
Vol 8 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Edwin C. Berry ◽  
Douglas L. Karlen

Effects of soil fauna on soil quality are largely unknown. Our objective was to learn whether long-term soil management has significantly affected earthworm species and populations at two Iowa locations. Soil cores were collected in fall 1989, spring 1990, and fall 1990 from a long-term tillage study in Polk County, Iowa, involving monoculture of corn (Zea mays L.) with either no-tillage, fall disking, fall chisel plowing, or fall moldboard plowing. Species found were Lumbricus terrestris (L), Octolasion tyrtaeum (Savigny), Aporrectodea trapezoides (Duges), A. turgida (Eisen), and A. tuberculata (Eisen), with O. tyrtaeum dominant across all treatments. As the amount of tillage increased, the number of earthworms generally decreased. InBoone County, Iowa, we compared the populations of mature and immature earthworms and cocoons on two adjacent fields, one managed conventionally, the other managed with an alternative farming system for more than 20 years. The predominant species was A. tuberculata. Regardless of management practice, the most worms were found in Canisteo soil on the toeslope landscape position.


Author(s):  
Nathaniel Revell ◽  
Craig Lashford ◽  
Matthew Blackett ◽  
Matteo Rubinato

Defining the infiltration characteristics of an area is beneficial for understanding soil compaction, determining soil health, and measuring the rate of surface water infiltration, which is needed for hydrological modelling. Single and double ring infiltrometers (SRI, DRI) are commonly used to determine infiltration characteristics in the field, however these are frequently impractical due to the required water volume, the weight and the intrusiveness of measurement, hindering the ease of replication. The Mini Disk Infiltrometer (MDI) offers a lightweight, portable and non-intrusive method of measuring infiltration, however no previous research has explained the influence of changing the tension settings on the collected infiltration data. To address this gap, this novel study tested the relationship between infiltration data collected using all tension settings of the Mini Disk Infiltrometer (MDI), against infiltration data collected using a 100mm Single Ring Infiltrometer (SRI). Three soil textures (sand, silt and clay) were collected from different geographical areas of the UK and deposited within the experimental facility designed for this study. Controlled infiltration measurements were taken with both the MDI and the SRI for each soil type, to further define the impact of MDI tension settings on derived infiltration, in comparison to the SRI. For the first time, the results show that the MDI tension setting of 0cm most closely replicated the findings of the SRI across all soils, which was supported through applying the Nash and Sutcliffe Efficiency (NSE) analysis. The accuracy with which the MDI replicated the infiltration of the SRI reduced as tension increased. Consequently, the previously assumed ideal tension setting of 2 cm, as defined by the MDI handbook and used in previous research, does not offer an accurate representation of derived infiltration.


2022 ◽  
Vol 335 ◽  
pp. 00004
Author(s):  
Edoardo Fiorilla ◽  
Alice Cartoni Mancinelli ◽  
Marco Birolo ◽  
Cesare Castellini ◽  
Dominga Soglia ◽  
...  

Poultry biodiversity represents a key factor to improve poultry resilience and promote sustainable and low input farming systems. The EU and member states promote protection of livestock biodiversity and the development of alternative farming through funding projects such as “Local Chicken Breeds in Alternative Production Chain: Welfare, Quality and Sustainability” (funded by the Italian Ministry of Research and University). The aim of the present research was to identify among five different poultry genotypes Bionda Piemontese (BP), Robusta Maculata (RM), RM x Sasso (RMxS), BP x Sasso (BPxS) and a commercial hybrid (Ross 308) the best suitable breed in terms of productivity and welfare for alternative housing system. A total of 300 (60 x genotype), 21 days old male birds were randomly allotted in two housing systems: 1) standard intensive farming (controlled environment, 33 kg/m2 and standard diet) and 2) free-range (“natural” environmental conditions, 21 kg/m2, access to outdoor area and low-input diet). Slaughtering was performed at 81 days of age. During the trial, the productive performance and behaviour of the animals were evaluated. The housing system, the genotype and their interaction significantly affected many of the studied variables, showing broiler not the ideal genotype for extensive farming system, which is more suited for low/medium performance strains.


Irriga ◽  
2002 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Mario Artemio Urchei ◽  
Carlos Ricardo Fietz

INFILTRAÇÃO DE ÁGUA EM UM LATOSSOLO ROXO MUITO ARGILOSO EM DOIS SISTEMAS DE MANEJO   Mário Artemio UrcheiCarlos Ricardo FietzEmbrapa Agropecuária Oeste, Caixa Postal 661, 79804-970 – Dourados, MSE-mail: [email protected] e [email protected]   1 RESUMO              Este trabalho objetivou caracterizar a infiltração de água em um latossolo roxo muito argiloso em dois sistemas de manejo (preparo convencional - PC e plantio direto - PD) e avaliar a adequação das equações de Horton e Kostiakov-Lewis para a estimativa da taxa de infiltração básica. O trabalho foi desenvolvido na área experimental da Embrapa Agropecuária Oeste, em Dourados, MS, durante os anos de 1994 e 1995. Em cada um dos sistemas foram realizados 25 testes de infiltração pelo método do infiltrômetro de duplo cilindro. Considerou-se como taxa de infiltração básica observada a média aritmética dos valores lidos após 120 minutos, enquanto sua estimativa foi feita pelas equações de Horton e de Kostiakov-Lewis. A taxa de infiltração básica, nos dois sistemas de manejo, ajustou-se à distribuição normal, de acordo com o teste de Kolmogorov-Smirnov, sem diferença entre as médias de 92,2 e 92,8mm h-1 (Tukey, 5%), para os sistemas PC e PD, respectivamente, consideradas muito altas. Esses valores apresentaram alta variabilidade nos dois sistemas, com coeficientes de variação de 78,6% para o PC e 83,5% para o PD. Apesar de as duas equações terem apresentado bom ajuste, os índices estatísticos evidenciaram que a equação de Kostiakov-Lewis é mais adequada para estimar a taxa de infiltração básica no latossolo roxo estudado.   UNITERMOS: Equações de infiltração, plantio direto, preparo convencional.   URCHEI, M. A.,  FIETZ, C.R.  WATER INFILTRATION IN AN OXISOL UNDER TWO CROPPING SYSTEMS   2 ABSTRACT   This work aimed to characterize water infiltration and evaluate the adequacy of Horton and Kostiachov-Lewis’s equations to estimate basic infiltration rate in an Oxisol under conventional tillage (CT) and no tillage (NT). The work was carried out over 1994 and 1995 in an experimental area of Embrapa Agropecuaria Oeste in Dourados city, Mato Grosso do Sul State, Brazil. For each  system  25  infiltration  tests  were  performed  by  the  double  ring infiltrometer method. Basic infiltration rates were  the average  of  infiltration measured  after  120 min of adding water on the soil surface. Estimation of basic infiltration rates has been performed by using Horton and Kostiakov-Lewis’s equations. Basic infiltration rates in both systems followed normal distribution according to Kolmogorov-Smirnov’s test. Average values for basic infiltration were 92.2 and 92.8 mm h-1 for CT and NT systems, respectively. No significantly different means have been observed  (P<0.05). The variation coefficients were 78.6% for CT and 83.5% for NT. In spite of two equations good adequacy, statistical indexes showed that Kostiakov-Lewis’s equation has been more fitted to estimate basic infiltration rates for the  studied Oxisol.  KEYWORDS: Infiltration equations, no tillage, conventional tillage.


2021 ◽  
Author(s):  
Waly Faye ◽  
Didier Orange ◽  
Djim Mouhamadou Lamine Diongue ◽  
Frederic Do ◽  
Christophe Jourdan ◽  
...  

&lt;p&gt;The soil hydraulic properties controlling infiltration are dynamic depending on interrelated factors such as soil texture and structure, climate (rainfall intensity), land use, vegetation cover and plant root systems. These physical and biological factors directly influence the size and geometry of the conductive pores, and therefore the bulk density, soil structure and finally water infiltration at surface. In the Sahelian zone, the slightest modification of the physical properties of the soil has severe consequences on the soil properties and thus on hydrological processes. It is therefore essential to improve knowledge on the spatial distribution of the hydraulic behavior of soils for optimization of agricultural uses.&lt;/p&gt;&lt;p&gt;We used the BEST method (Beerkan Estimation of Soil Transfer parameters) on a toposequence of the Senegalese groundnut basin (Fatick region) in the Faidherbia-Flux observatory[1] where the average rainfall is 590 mm/yr. The studied toposequence (400 m long) is representative of a common agroforestry zone with annual cultivation of millet and peanuts and a sparse density of Faidherbia albida. The slope is low (1%) with small lowland areas made up of sandy soil with more clay (clay soil), while the glacis is represented by more or less compacted sand. The infiltrometry measurements were made with the automatic single-ring infiltrometer developed by Di Prima et al. (2016), used here for the first time in West Africa. The explicative variables tested are the type of soils, including: clay soils under tree (CLUT) and outside tree (CLOT), sandy soils under tree (SSUT) and outside trees (SSOT), and cattle trampled soils outside trees (TSOT) particularly compacted and largely present in the study area. BEST algorithms were applied to the experimental data to determine the hydraulic properties of the soils of the different variables and to draw water retention and hydraulic conductivity curves.&lt;/p&gt;&lt;p&gt;There are significant differences in infiltration rates between the sampled zones and in relation with the studied factors. The highest infiltration rate is found on sandy soils under tree (SSUT) with an average infiltration rate of 14.0 mm/min, followed by SSOT with 11.6 mm/min. Then the clay soils CLUT and CLOT are characterized by similar lower hydraulic responses with average infiltration rates of 6.9 mm/min and 6.2 mm/min, respectively. The average infiltration rate is the lowest on the compacted sandy soils TSOT, with only 5.4 mm/min. The study of the variability of the infiltration rates measured by class of variable shows a large variability for CLOT, CLUT and SSUT (decreasing order of variability). These results are in agreement with the measured values of dry soil bulk density. The high infiltration rates in the clay soils outside and under trees can be explained by the higher content of organic matter observed on the sampling, and probably by the existence of preferential flow activated by the macropores particularly present on clay soils (CLOT and CLUT) and on sandy soils under tree (SSUT).&lt;/p&gt;&lt;p&gt;Di Prima, S., et al., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20&amp;#8211;34. doi:10.1016/j.geoderma.2015.08.006&lt;/p&gt;&lt;div&gt; &lt;div&gt; &lt;p&gt;[1] Faidherbia-Flux&amp;#160;: https://lped.info/wikiObsSN/?Faidherbia-Flux&lt;/p&gt; &lt;/div&gt; &lt;/div&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


Sign in / Sign up

Export Citation Format

Share Document