Teaching Seed Bank Ecology in an Undergraduate Laboratory Exercise

1995 ◽  
Vol 9 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Emilie E. Regnier

The study of weed life cycles, reproductive strategies, and the soil seed bank is emphasized in the undergraduate weed science course at Ohio State University as central to an understanding of the survival of weeds in the environment. A laboratory exercise was conducted every spring and fall academic quarter from 1991 to 1993 to demonstrate the effects of long-term cropping and soil disturbance histories on weed seed banks and aboveground weed communities. Five sites with diverse histories of culture were sampled; these included a field cultivated in vegetables under continuous conventional tillage for 59 yr, a field cultivated in field corn under continuous no-tillage for 11 yr, a 24 yr-old turfgrass research farm, a 70 yr-old forest, and a section of the forest border. Students conducted a survey of the weeds growing at the sites and separated and identified seeds from soil samples over a 3-wk period in weekly 2-h laboratory periods. Students wrote reports interpreting the data based on their knowledge of the site histories, weed life cycles, and weed seed production and longevity characteristics. The data were consistent over academic quarters as well as with published research, indicating that the survey and soil sampling techniques provided a reasonably accurate representation of the weed flora and soil seed populations. Weeds found growing at the sites were primarily summer annuals at the vegetable site, and a mix of summer and winter annuals, biennials, and perennials at the remaining sites. Annual weeds dominated the seed banks of all sites with common lambsquarters, pigweed spp., and common purslane being the most commonly found seeds. The presence of most seeds in the soil could be explained by a combination of species seed production and seed longevity characteristics and species abundance in the standing community. Interpretation of the data required students to integrate and apply lecture material and provided an excellent thinking exercise.

2019 ◽  
Vol 41 (5) ◽  
pp. 383 ◽  
Author(s):  
Vinod K. Chejara ◽  
Paul Kristiansen ◽  
R. D. B. (Wal) Whalley ◽  
Brian M. Sindel ◽  
Christopher Nadolny

Hyparrhenia hirta (L.) Stapf (also known as Coolatai grass, South African bluestem or thatching grass) has become a serious invasive weed in Australia. Within its native range, it is generally regarded as a useful grass particularly for thatching, and seed production is low with a low soil seed bank of from 2 to 200seedsm–2. Several hundred accessions of H. hirta were deliberately introduced into Australia up until the 1980s and nearly all were discarded because of poor seed production. However, at least one introduction in the 1890s in northern New South Wales (NSW), Australia, has possibly contributed to the present serious weed problem. Annual seed production from roadside stands in northern NSW ranged from 7000 to 92000seedsm–2 in 2015. The soil seed bank under dense H. hirta infestations in the same region in 2006 and 2007, was found to be ~30000seedsm–2 mostly confined to the top 2cm, with few dormant seeds and a large reduction of these numbers over the next 12 months when further seed input was prevented. Similar studies of other perennial grass weeds have found seed banks of similar sizes, but dormancy mechanisms ensure that their seed banks last for at least 10 years without further seed input. These results suggest that the present weedy populations of H. hirta have dramatically increased fecundity enabling a large seed bank to develop beneath dense stands. The development of seed dormancy and consequently a long-lived seed bank would make this weed even more difficult to control. Until seed dormancy develops, control of H. hirta in northern NSW can be effective provided further input into the seed bank can be prevented.


2011 ◽  
Vol 25 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Kevin D. Gibson ◽  
John Mcmillan ◽  
Stephen G. Hallett ◽  
Thomas Jordan ◽  
Stephen C. Weller

Weeds that emerge between rows in fresh market tomatoes after the critical period of competition are not suppressed by the crop and can produce large quantities of seed. A living mulch planted between rows might limit weed seed production. Buckwheat was seeded between tomato rows after the critical period in 2007 and 2008 in field studies near Lafayette, IN. Weeds were allowed to emerge after the critical period (CP), controlled throughout the growing season (no seed threshold [NST]), or mowed to limit seed production (MOW). Buckwheat and MOW plots were mowed twice after the critical period in 2007 and once in 2008. Seed banks were sampled after the critical period and in the following spring. Tomato yields were not reduced by growing buckwheat between rows. Seed bank densities for common purslane and carpetweed, which escaped mowing due to their prostrate habits, increased in all treatments. Germinable seed bank densities were 306 seeds m−2or less in the NST and buckwheat treatments but 755 seeds m−2or more in the CP treatments for species with erect habits in both years. Seed bank densities were lower in the MOW treatment than in the CP treatments in 2007 but not in 2008. In a parallel experiment conducted in adjacent plots, buckwheat was seeded at five rates (0, 56, 112, 168, and 224 kg seed ha−1). Plots were mowed and emergent weeds sampled as described for the intercrop experiment. Weed densities before mowing decreased linearly with buckwheat seed rate. After mowing, no relationship was detected between seed rate and weed densities. This study supports the hypothesis that a living mulch planted after the critical period can be used to limit seed bank growth without reducing tomato yields, but additional research is needed to better understand the effect of mowing on living mulch growth and weed suppression.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 398-403 ◽  
Author(s):  
Marie-Josée Simard ◽  
Sébastien Rouane ◽  
Gilles D. Leroux

The effect of herbicide rates on weed control and crop yield is the subject of countless and ongoing research projects. Weed seed banks receive very little attention in comparison. The seed bank resulting from 3 yr (2006 to 2008) of single herbicide rates in a cropping system where glyphosate/glufosinate and corn/soybean were rotated or not was evaluated in a field located in St-Augustin-de-Desmaures, Québec, Canada. Field plots under conventional tillage were seeded in corn every year, or corn and soybean (1 yr). These plots received the same herbicide every year or various glyphosate/glufosinate 3-yr sequences. Subplots were sprayed with a single POST application of the recommended rate of glyphosate (900 g ae ha−1) or glufosinate (500 g ai ha−1) or lower rates. Subplots received the same full (1.0×, recommended) or reduced (0.5×, 0.75×) rate every year. After crop harvest in 2008, soil cores were extracted and the weed seed bank was evaluated. Including soybean in the cropping system resulted in lower seed banks compared to those under continuous corn cropping. Including glufosinate in a glyphosate herbicide sequence increased weed seed banks due to the lower efficacy of the glufosinate rates tested at reducing the seed bank of annual grasses. Higher herbicide rates translated into lower seed banks, up to a certain rate. After 3 yr, the lowest seed bank (full glyphosate rates every year) still had 4,339 ± 836 seeds m−2and was higher than the initial seed bank (2,826 ± 724 seeds m−2).


1996 ◽  
Vol 36 (3) ◽  
pp. 299 ◽  
Author(s):  
TS Andrews ◽  
RDB Whalley ◽  
CE Jones

Inputs and losses from Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] soil seed banks were quantified on the North Coast of New South Wales. Monthly potential seed production and actual seed fall was estimated at Valla during 1991-92. Total potential production was >668 000 seeds/m2 for the season, while seed fall was >146000 seeds/m2. Seed fall >10000 seeds/m2.month was recorded from January until May, with further seed falls recorded in June and July. The impact of seed production on seed banks was assessed by estimating seed banks in the seed production quadrats before and after seed fall. Seed banks in 4 of the 6 sites decreased in year 2, although seed numbers at 1 damp site increased markedly. Defoliation from mid-December until February, April or June prevented seed production, reducing seed banks by 34% over 7 months. Seed banks in undefoliated plots increased by 3300 seeds/m2, although seed fall was estimated at >114 000 seeds/m2. Emergence of GPG seedlings from artificially established and naturally occurring, persistent seed banks was recorded for 3 years from bare and vegetated treatment plots. Sown seeds showed high levels of innate dormancy and only 4% of seeds emerged when sown immediately after collection. Longer storage of seeds after collection resulted in more seedlings emerging. Estimates of persistent seed banks ranged from 1650 to about 21260 seeds/m2. Most seedlings emerged in spring or autumn and this was correlated with rainfall but not with ambient temperatures. Rates of seed bank decline in both bare and vegetated treatment plots was estimated by fitting exponential decay curves to seed bank estimates. Assuming no further seed inputs, it was estimated that it would take about 3 and 5 years, respectively, for seed banks to decline to 150 seeds/m2 in bare and vegetated treatments.


2011 ◽  
Vol 79 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Maciej Wódkiewicz ◽  
Anna Justyna Kwiatkowska-Falińska

Forest seed banks mostly studied in managed forests proved to be small, species poor and not reflecting aboveground species composition. Yet studies conducted in undisturbed communities indicate a different seed bank characteristic. Therefore we aimed at describing soil seed bank in an undisturbed forest in a remnant of European lowland temperate forests, the Białowieża Forest. We compared similarity between the herb layer and seed bank, similarity of seed bank between different patches, and dominance structure of species in the herb layer and in the seed bank of two related oak-hornbeam communities. We report relatively high values of Sorensen species similarity index between herb layer and seed bank of both patches. This suggests higher species similarity of the herb layer and soil seed bank in natural, unmanaged forests represented by both plots than in fragmented communities influenced by man. Although there was a set of core seed bank species present at both plots, yielding high Sorensen species similarity index values, considerable differences between plots in seed bank size and dominance structure of species were found, indicating spatial variability of studied seed bank generated by edaphic conditions. Dominance structure of species in the herb layer was not reflected in the underlying seed bank. This stresses, that natural forest regeneration cannot rely only on the seed bank, although some forest species are capable of forming soil seed banks. While forest seed banks may not reflect vegetation composition of past successional stages, they may inform on history and land use of a specific plot.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


Author(s):  
Ya-Fei Shi ◽  
Zengru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Soil seed banks may offer great potential for restoring and maintaining desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the annual dynamics in the composition and relative abundance of these soil seed banks. We conducted a long-term observational study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. The desert seed bank was dominated by annual herbs. We found that more rainfall in the growing season increased the number of seeds in the soil seed bank, and that quadrats at relatively higher elevations had fewer seeds. The species composition had more similarity in the seed bank than in the aboveground vegetation, though the seed bank and aboveground vegetation did change synchronously due to the rapid propagation of annuals. Together, our findings suggest that the combined effects of environmental factors and plant life forms determine the species composition and size of soil seed banks in deserts. Thus, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of longer-lived lifeforms in degraded deserts.


2020 ◽  
Vol 10 ◽  
pp. 1-14
Author(s):  
Charles N. Nyamwamu ◽  
Rebecca Karanja ◽  
Peter Mwangi

This study sought to determine the relation between soil weed seed bank and weed management practices and diversity in farms in Kisii Central Sub County, Western Kenya. Eight administrative sub-locations were randomly selected. Ten farms were selected at equal distance along transect laid across each sub-location. Weed soil seed bank was assessed from soil samples collected from each of the farms; a sub-sample was taken from a composite sample of ten soil cores of 5cm diameter and 15cm deep and placed in germination trays in a greenhouse. Weed diversity in soil weed seedbank was calculated using the Shannon index (H’). Twelve weed species from 12 genera of nine families were recorded. Diversity of the weed species in soil weed seed bank was (H'=1.48). Weed management practises significantly affected weed species soil weed seedbank reserves. Use of inefficient and ineffective hand-weeding techniques resulted in high weed species diversity and abundance.


Bothalia ◽  
2007 ◽  
Vol 37 (2) ◽  
pp. 249-258 ◽  
Author(s):  
M. J. S. Kellerman ◽  
M. W. Van Rooyen

Seasonal variation in seed bank size and species composition of five selected habitat types within the Tembe Elephant Park. South Africa, was investigated. At three-month intervals, soil samples were randomly collected from five different habitat types: a, Licuati forest; b, Licuati thicket; c, a bare or sparsely vegetated zone surrounding the forest edge, referred to as the forest/grassland ecotone; d, grassland; and e, open woodland. Most species in the seed bank flora were either grasses, sedges, or forbs, with hardly any evidence of woody species. The Licuati forest and thicket soils produced the lowest seed densities in all seasons.  Licuati forest and grassland seed banks showed a two-fold seasonal variation in size, those of the Licuati thicket and woodland a three-fold variation in size, whereas the forest/grassland ecotone maintained a relatively large seed bank all year round. The woodland seed bank had the highest species richness, whereas the Licuati forest and thicket soils were poor in species. Generally, it was found that the greatest correspondence in species composition was between the Licuati forest and thicket, as well as the forest/grassland ecotone and grassland seed bank floras.


Sign in / Sign up

Export Citation Format

Share Document