Interference of Three Annual Grasses with Grain Sorghum (Sorghum bicolor)

1990 ◽  
Vol 4 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Brenda S. Smith ◽  
Don S. Murray ◽  
J. D. Green ◽  
Wan M. Wanyahaya ◽  
David L. Weeks

Barnyardgrass, large crabgrass, and Texas panicum were evaluated in field experiments over 3 yr to measure their duration of interference and density on grain sorghum yield. When grain yield data were converted to a percentage of the weed-free control, linear regression predicted a 3.6% yield loss for each week of weed interference regardless of year or grass species. Grain sorghum grown in a narrow (61-cm) row spacing was affected little by full-season interference; however, in wide (91-cm) rows, interference increased as grass density increased. Data from the wide-row spacing were described by linear regression following conversion of grain yield to percentages and weed density to log10. A separate nonlinear model also was derived which could predict the effect of weed density on grain sorghum yield.

1999 ◽  
Vol 50 (6) ◽  
pp. 985 ◽  
Author(s):  
A. M. Bwye ◽  
R. A. C. Jones ◽  
W. Proudlove

Lupinus angustifolius (narrow-leafed lupin) was sown in 7 field experiments to examine the effects of cultural practices on incidence of cucumber mosaic virus (CMV). The factors investigated were row spacing, banding fertiliser below seed, straw groundover, and tillage. The seed sown carried 5–15% CMV infection. Seed-infected plants were the primary source for subsequent virus spread by aphids. Incidence of seed-infected plants and the extent of virus spread were gauged by counting numbers of lupin plants showing typical seed-borne and current-season CMV symptoms. Due to greater competition with other plants within wide than narrow rows, wide row spacing diminished the survival of seed-infected plants by 46%. Increased plant growth from banding superphosphate below seed did not significantly decrease numbers of seed-infected plants surviving. Straw spread on the soil surface suppressed final CMV incidence by 25–40% and, when applied at different rates, diminished recorded CMV incidence more at 4 than 2 t/ha and least at 1 t/ha. Where there was no straw, CMV incidence increased faster with narrow spacing than wide spacing. Soil disturbance from sowing seed with double discs instead of tynes significantly increased incidences of both seed-borne and current-season infection and diminished grain yield. Neither straw nor row spacing treatments significantly affected grain yield, but the decrease in CMV spread due to straw ground cover significantly increased individual seed weight once and overall yields were greater with straw. Myzus persicae was the main colonising aphid species but Aphis craccivora and Acyrthosiphon kondoi also colonised the lupins. There were significantly fewer colonising M. persicae in plots with 4 t/ha of straw than in those with none. This work suggests that stubble retention, minimum tillage, and wide row spacing should be included as components of an integrated disease management strategy for CMVin L. angustifolius crops.


1992 ◽  
Vol 6 (1) ◽  
pp. 129-135 ◽  
Author(s):  
David L. Barton ◽  
Donald C. Thill ◽  
Bahman Shafii

The effect of barley seeding rate and row spacing, and triallate, diclofop, and difenzoquat herbicide rate on barley grain yield and quality, and wild oat control were evaluated in field experiments near Bonners Ferry, Idaho, in 1989 and 1990. The purpose of the study was to develop integrated control strategies for wild oat in spring barley. Barley row spacing (9 and 18 cm) did not affect barley grain yield. Barley grain yield was greatest when barley was seeded at 134 or 201 kg ha–1compared to 67 kg ha–1. Wild oat control increased as wild oat herbicide rate increased and barley grain yield was greatest when wild oat herbicides were applied. However, barley grain yield was similar when wild oat biomass was reduced by either 65 or 85% by applications of half and full herbicide rates, respectively. Net return was greatest when the half rate of herbicide was applied to 100 wild oat plants per m2and was greatest when half or full herbicide rates were applied to 290 wild oat plants per m2. Net return increased when the seeding rate was increased to 134 or 201 kg ha–1when no herbicide was applied and when 290 wild oat plants per m2were present.


2020 ◽  
Vol 34 (5) ◽  
pp. 699-703
Author(s):  
Jason K. Norsworthy ◽  
Jacob Richburg ◽  
Tom Barber ◽  
Trenton L. Roberts ◽  
Edward Gbur

AbstractAtrazine offers growers a reliable option to control a broad spectrum of weeds in grain sorghum production systems when applied PRE or POST. However, because of the extensive use of atrazine in grain sorghum and corn, it has been found in groundwater in the United States. Given this issue, field experiments were conducted in 2017 and 2018 in Fayetteville and Marianna, Arkansas, to explore the tolerance of grain sorghum to applications of assorted photosystem II (PSII)-inhibiting herbicides in combination with S-metolachlor (PRE and POST) or mesotrione (POST only) as atrazine replacements. All experiments were designed as a factorial, randomized complete block; the two factors were (1) PSII herbicide and (2) the herbicide added to create the mixture. The PSII herbicides were prometryn, ametryn, simazine, fluometuron, metribuzin, linuron, diuron, atrazine, and propazine. The second factor consisted of either no additional herbicide, S-metolachlor, or mesotrione; however, mesotrione was excluded in the PRE experiments. Crop injury estimates, height, and yield data were collected or calculated in both studies. In the PRE study, injury was less than 10% for all treatments except those containing simazine, which caused 11% injury 28 d after application (DAA). Averaged over PSII herbicide, S-metolachlor–containing treatments caused 7% injury at 14 and 28 DAA. Grain sorghum in atrazine-containing treatments yielded 97% of the nontreated. Grain sorghum receiving other herbicide treatments had significant yield loss due to crop injury, compared with atrazine-containing treatments. In the POST study, ametryn- and prometryn-containing treatments were more injurious than all other treatments 14 DAA. Grain sorghum yield in all POST treatments was comparable to atrazine, except prometryn plus mesotrione, which was 65% of the nontreated. More herbicides should be evaluated to find a comparable fit to atrazine when applied PRE in grain sorghum. However, when applied POST, diuron, fluometuron, linuron, metribuzin, propazine, and simazine have some potential to replace atrazine in terms of crop tolerance and should be further tested as part of a weed control program across a greater range of environments.


2010 ◽  
Vol 24 (3) ◽  
pp. 219-225 ◽  
Author(s):  
D. Shane Hennigh ◽  
Kassim Al-Khatib ◽  
Mitchell R. Tuinstra

Postemergence herbicides to control grass weeds in grain sorghum are limited. Acetolactate synthase (ALS) –inhibiting herbicides are very effective at controlling many grass species in many crops; unfortunately, use of ALS-inhibiting herbicides is not an option in conventional grain sorghum because of its susceptibility to these herbicides. With the development of ALS-resistant grain sorghum, several POST ALS-inhibiting herbicides can be used to control weeds in grain sorghum. Field experiments were conducted in 2007 and 2008 to evaluate the efficacy of tank mixtures of nicosulfuron + rimsulfuron applied alone or in combination with bromoxynil, carfentrazone–ethyl, halosulfuron + dicamba, prosulfuron, 2,4-D, or metsulfuron methyl + 2,4-D. In addition, these treatments were applied with and without atrazine. Nicosulfuron + rimsulfuron controlled barnyardgrass, green foxtail, and giant foxtail 99, 86, and 91% 6 wk after treatment (WAT), respectively. A decrease in annual grass control was observed when nicosulfuron + rimsulfuron was tank mixed with some broadleaf herbicides, although the differences were not always significant. In addition, nicosulfuron + rimsulfuron controlled velvetleaf and ivyleaf moringglory 64 and 78% 6 WAT, respectively. Control of velvetleaf was improved when nicosulfuron + rimsulfuron was tank mixed with all broadleaf herbicides included in this study with the exception of atrazine, bromoxynil, and prosulfuron + atrazine. Control of ivyleaf morningglory was improved when nicosulfuron + rimsulfuron was tank mixed with all of the herbicides included in this study with the exception of metsulfuron methyl + 2,4-D. Weed populations and biomass were lower when nicosulfuron + rimsulfuron were applied with various broadleaf herbicides than when it was applied alone. Grain sorghum yield was greater in all herbicide treatments than in the weedy check, with the highest grain yield from nicosulfuron + rimsulfuron + prosulfuron. This research showed that postemergence application of nicosulfuron + rimsulfuron effectively controls grass weeds, including barnyardgrass, green foxtail, and giant foxtail. The research also showed that velvetleaf and ivyleaf morningglory control was more effective when nicosulfuron + rimsulfuron were applied with other broadleaf herbicides.


2014 ◽  
Vol 66 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Danuta Martyniak ◽  
Grzegorz Żurek

Abstract A wide range of seed material from different grass species is necessary to keep high quality grasslands and to create buffer zones between arable lands and forest and to re-cultivate waste or fallow land. Therefore, the aim of our research was to describe elements of seed propagation of some minor grass species. On the basis of field experiments, different spacing and seed quantities were investigated for Beckmannia eruciformis, Cynosurus cristatus and Elytrigia elongata aiming at an optimal seed production. Satisfying seed yields were obtained even at a reduced (50% to 75%) amount of seed quantity, as compared to theoretical (or normal) values, calculated on the basis of number of plants per area unit.


2020 ◽  
Vol 33 (2) ◽  
pp. 422-432
Author(s):  
EDUARDO LIMA DO CARMO ◽  
JOÃO VITOR ALVES DE SOUSA ◽  
CAMILA JORGE BERNABÉ FERREIRA ◽  
GUILHERME BRAGA PEREIRA BRAZ ◽  
GUSTAVO ANDRÉ SIMON

ABSTRACT The spatial arrangement of plants in the cultivation area is a factor that directly influences grain yield, since the best arrangement can result in the greater use of water, light and nutrients. The aim of the study was to evaluate the agronomic performance of sorghum sown in double row spacing in the Brazilian Cerrado. For this purpose, field experiments were conducted in the 2018 and 2019 seasons in a complete block design with a factorial scheme of 2 x 5. There were four replications, using two row spacing: traditional (0.50 m) and double rows (0.25 m/0.75 m) and five plant populations: 120, 180 (recommended), 240, 300 and 360 thousand, plants ha-1. Morphological characteristics, yield components and grain yield were evaluated using joint data analysis for the two years of study. In 2018, due to lower rainfall during the crop season, the use of a double row arrangement presented grain yield lower than traditional spacing. On the other hand, in 2019, the year with the best water distribution, the yield was superior to that of 2018. The increase in plant population per hectare increased the yield of sorghum grains, with gains of up to 24% in relation to the recommended population of 180 thousand plants ha-1, demonstrated that the densification in this crop can be a promising technique as long as its cost/benefit is considered.


1995 ◽  
Vol 20 (1) ◽  
pp. 231-231
Author(s):  
R. M. Anderson ◽  
G. L. Teetes

Abstract Selected insecticides were evaluated for sorghum midge control at the Texas Agricultural Experiment Station Research Farm near College Station, TX. Hybrid grain sorghum (ATx399 × RTx430) was planted 20 May in rows spaced 30 inches apart. Insecticide treatments were compared in plots, 8 rows × 40 ft long, arranged in a RCB design with 4 replications. Insecticides were applied to the middle 2 rows of plots. Insecticides were applied between 0800 and 0900 hours CDT by using a hand-held backpack sprayer with TX-3 hollow cone nozzles at 35 psi, producing a finished spray volume of 5.6 gpa. Application began when 10-30% of the panicles were flowering; insecticides were applied 10, 13, and 16 Jul. Adult sorghum midge abundance was determined just prior to each application by counting the number of sorghum midges on 10 individual sorghum panicles enclosed in clear plastic bags. The panicles were cut from the plant and returned to the laboratory for examination and sorghum midge counts. Grain yield data were collected from the 2 middle rows per plot. Panicles were hand harvested from selected 8.75 ft sections of row/plot and mechanically threshed. Data were statistically analyzed by using ANOVA and LSD.


1988 ◽  
Vol 28 (2) ◽  
pp. 211
Author(s):  
LJ Wade ◽  
JH Ladewig

Variation in grain yield was studied within 3 contour bays of commercial grain sorghum. The objective was to determine the optimal quadrat sampling strategy for estimating mean grain yield of the whole bay, and of positions within the bay. A series of strategies were identified for attaining coefficients of variation (c.v.) of 5, 10 and 15%, using 9-m2 quadrat samples. For estimating the bay mean at a c.v. of 10%, the outcome preferred was to collect 1 quadrat sample at each of 6 positions (plots) within the bay. To estimate the plot mean at the same precision as the bay mean, 4 quadrat samples would be required at each position. In subsequent crops, a high correlation (r2=0.93) was obtained between estimates of mean grain yield from the chosen strategy and total bay yield from header harvesting. Alternative strategies to suit individual purposes may be identified from the data presented.


1993 ◽  
Vol 33 (2) ◽  
pp. 167 ◽  
Author(s):  
PM Dowling ◽  
PTW Wong

The effect of 5 preseason management treatments on seed set reduction of annual weed grasses and their regeneration in the following autumn was evaluated in a 2-year field experiment commencing at Orange in spring 1986. Preseason (spring) treatments were paraquat, glyphosate (2 rates), unsprayed heavy grazing, and unsprayed control. In the first of 2 successive wheat crops (planted 1987), 3 in-crop weed control treatments [control, chlorsulfuron (both sod-seeded), and trifluralin plus cultivation] were imposed. In 1988, the second wheat crop was sown into a cultivated seedbed or direct-drilled. The preseason treatments reduced potential annual grass regeneration by 91-99% compared with the control, with heavy grazing being the best treatment. For each preseason treatment compared with the control, the pattern of actual seedling emergence within the crop during 1987 was similar to that of potential emergence for each grass species (except Lolium rigidum), but numbers were lower and more variable (7-86% of potential numbers). The proportion of Bromus spp. and Vulpia spp. emerging within the crop declined from the first to the second crop, while L. rigidum increased to an average of 93% of the annual grass population in 1988. Trifluralin plus cultivation increased the control of annual grasses in 1987. In 1988, the 1987 in-crop treatments had little carryover effect on annual grass control; however, wheat grain yield was increased by both chlorsulfuron and trifluralin. Preseason management reduced seed set of annual grass weeds, and this control was maintained under cropping for at least 2 years (except for L. rigidum). Wheat grain yield responded to this control. Long-term control of L. rigidum where soil is disturbed appears difficult because of apparent long-lived seed in the soil.


Sign in / Sign up

Export Citation Format

Share Document