Velvetleaf (Abutilon theophrasti) Interference with Cotton (Gossypium hirsutum)

1990 ◽  
Vol 4 (4) ◽  
pp. 799-803 ◽  
Author(s):  
Brenda S. Smith ◽  
Don S. Murray ◽  
David L. Weeks

Field experiments were conducted to evaluate the critical period for velvetleaf interference with cotton and to assess the reliability of using weed growth variables as predictors of cotton lint yield losses. An inverse linear relationship existed between velvetleaf dry weight and cotton lint yield. The relationship between the number of velvetleaf main-stem nodes or velvetleaf height with cotton lint yield was best described by quadratic regression equations. Weed dry weight appeared to be the most accurate predictor followed by weed height and by number of velvetleaf main-stem nodes. A nonlinear equation best described percent lint yield loss as a function of critical-period interference intervals.

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 349
Author(s):  
Manuel Guzman ◽  
Luis Vilain ◽  
Tatiana Rondon ◽  
Juan Sanchez

Evaluation of sowing density is an important factor for achieving maximum yields without affecting other agronomic traits. Field experiments were conducted during three consecutive years (2008, 2009 and 2010) to determinate the effect of four sowing density (62,500; 83,333; 100,000 and 142,857 pl ha−1) on yields and its components of two cotton varieties, ‘Delta Pine 16′ and ‘SN-290′ in Venezuela. The traits evaluated were lint yield, boll weight, number of seeds per boll, 100-seed weight, and fiber content. Highly significant differences (p ≤ 0.01) were observed among genotypes, sowing density and their interactions for all traits. Sowing density was not affected by year factor. High lint yield was found in ‘SN-290′ (4216.2 kg ha−1) at 100,000 pl ha−1; and in ‘Delta Pine 16′ (3917.3 kg ha−1) at 83,333 pl ha−1. The highest sowing density (142,857 pl ha−1), decrease lint yield and yield components in the genotypes. The highest boll weight was obtained by ‘SN-290′ with 6.4 g in average. All sowing densities evaluated resulted in lint percentages above 40%. Cotton lint yield was positively correlated with all yield components. Our results indicate that highest lint yields could be obtained with sowing densities between 83,333 and 100,000 pl ha−1 depending upon varieties used across savannahs of Venezuela.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Matt W. Rowland ◽  
Don S. Murray ◽  
Laval M. Verhalen

Four field experiments were conducted in Oklahoma to measure full-season Palmer amaranth interference on cotton lint yield and fiber properties. Density of the weed ranged from 0 to 12 plants 10 m−1of row. Cotton lint yield vs. weed density fit a linear model for densities ⩽ 8 weeds row−1at Perkins and Chickasha in 1996 and at Alms in 1997. At Perkins in 1997, all densities fit a linear model. For each increase of 1 weed row−1, lint yield reductions were 62 kg ha−1(or 10.7%) and 58 kg ha−1(or 11.5%) at Perkins and at Chickasha in 1996, respectively. At Perkins and Alms in 1997, for each 1 weed row−1, lint yield was reduced 71 kg ha−1(or 5.9%) and 112 kg ha−1(or 8.7%), respectively. Lint yield vs. end-of-season weed volume fit a linear model except at Alms in 1997. For each increase of 1 m3of weed plot−1, cotton lint yield in 1996 was reduced by 1.6 and 1.5% at Perkins and Chickasha, respectively. In 1997 at Perkins and Altus (⩽ 6 weeds), each increase of 1 m3of weed plot−1reduced lint yield 1.6 and 2.3%, respectively. Lint yield vs. end-of-season weed biomass fit a linear model in all four experiments. Lint yield was reduced 5.2 to 9.3% for each increase of 1 kg of weed biomass plot−1. Fiber analyses revealed significant differences for micronaire (fiber fineness) among weed densities in two experiments, marginal significance in a third, and none in a fourth. An intermediate number of weeds often resulted in improved fiber micronaires in these environments. No other fiber properties were influenced by weed density.


Weed Science ◽  
1989 ◽  
Vol 37 (5) ◽  
pp. 688-694 ◽  
Author(s):  
Eric P. Castner ◽  
Don S. Murray ◽  
Neil M. Hackett ◽  
Laval M. Verhalen ◽  
David L. Weeks ◽  
...  

The effects of hogpotato interference on cotton and of the crop on the weed were measured under field conditions in four environments. Full-season interference from 105 ± 21 hogpotato plants/m2reduced cotton plant height by 14 to 44%. Conversely, weed dry weight was reduced 54% through full-season interference from cotton. Lint yield reductions in cotton ranged from 31 to 98% following full-season weed interference. Interference during the first 7 weeks of crop growth reduced lint yield by approximately 40%; however, interference after 7 weeks of weed-free maintenance did not affect lint yield. Interference reduced boll size in 3 of 4 yr, lint percent in 2 of 4, and boll number in the only year it was measured. Cotton fiber length, uniformity index, and micronaire were reduced by full-season interference in 1 of 2 yr; however, fiber strength was not affected in either year. Significant use of soil water by hogpotato occurred at 120 cm and deeper in the soil while cotton used water primarily in the upper 75 cm.


Weed Science ◽  
1990 ◽  
Vol 38 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Michael S. Riffle ◽  
Don S. Murray ◽  
John F. Stone ◽  
David L. Weeks

Soil water from plots containing cotton, devil's-claw, cotton with devil's-claw, and bare soil was measured throughout the growing season using a neutron probe and related to weed interference with the crop. Volumetric water content throughout the soil profile to a depth of 180 cm did not differ among treatments before the 5th or 6th week after cotton emergence. Greater water depletion occurred early in the season in plots containing devil's-claw which corresponded to a period of rapid weed growth. In plots containing only cotton, the largest reduction in water content occurred later in the season during peak bloom and early boll formation. Soil water content at depths greater than 105 cm remained unchanged in all plots throughout the season. Interference from devil's-claw reduced cotton lint yield 96% in 1986 and 46% in 1987. Higher rainfall and reduced weed populations in 1987 reduced the impact of weed interference on cotton lint yield.


1989 ◽  
Vol 3 (2) ◽  
pp. 313-316 ◽  
Author(s):  
Michael S. Riffle ◽  
Don S. Murray ◽  
Laval M. Verhalen ◽  
David L. Weeks

The duration and intensity of unicorn-plant interference on lint yield of cotton were evaluated in the field. Random densities of 5.5 ± 1.1 unicorn-plant/m2reduced lint yield by 41 kg/ha or about 5% for each week that unicorn-plant was present. Interference by 4, 8, and 12 weeds/10 m row decreased yield by 22, 49, and 56 kg/ha, respectively, for each week of weed interference. Each 1 kg/ha of unicorn-plant dry weight reduced lint yield by 0.26 kg/ha. Linear regression of weed dry weight could be used to predict cotton lint yield changes regardless of duration or intensity of weed interference.


Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1244-1249 ◽  
Author(s):  
S. R. Koenning ◽  
K. L. Edmisten ◽  
K. R. Barker ◽  
D. T. Bowman ◽  
D. E. Morrison

Field experiments were conducted to evaluate the effect of soil-incorporated poultry litter on the population dynamics of Hoplolaimus columbus and cotton lint yield. Rates of poultry litter applied varied from 0.0 to 27.0 t/ha and were applied in December, February, or March. Time of application did not influence population densities of this nematode or cotton yield. The rate of poultry litter applied was negatively related to the population density of H. columbus at midseason, but not at other sampling dates. The lower midseason levels of this nematode corresponded with increases in cotton lint yield in all experiments. Cotton yield increases generally were linear with respect to the rate of litter applied, although the highest rates of litter applied did not always result in the greatest cotton yield. Poultry litter can be used effectively to supply nutrients to the crop and suppress damaging levels of H. columbus. Optimal rates of litter application were from 6.0 to 13.4 t/ha. Application of poultry litter at these rates, however, may exceed nutrient levels required for best management practices.


Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 129-133 ◽  
Author(s):  
Brenda S. Smith ◽  
John A. Pawlak ◽  
Don S. Murray ◽  
Laval M. Verhalen ◽  
J. D. Green

Field experiments were conducted in 1985 and 1986 under eight environments to evaluate the population dynamics of a range of silverleaf nightshade densities and to measure the effects of those populations on cotton lint yield. Dry weed weights of silverleaf nightshade stands were influenced by growing conditions among years, but were positively related to initial densities as long as 2 yr after establishment. Stem numbers increased as initial densities and stand age increased. A negative linear relationship existed between cotton lint yield and weed biomass and between cotton lint yield and stem number from both 1- and 2-yr-old weed stands. For each 1 kg/10 m of row increase in dry weed weight from 1- and 2-yr-old stands, a 9 and 21% lint yield loss/ha was predicted, respectively. For each stem/10 m of row, a 0.35 and 0.31% yield loss was predicted, respectively. Late-planted cotton was less vulnerable to yield reductions by silverleaf nightshade; however, its yield potential was also less.


1986 ◽  
Vol 78 (3) ◽  
pp. 534-538 ◽  
Author(s):  
D. L. Kittock ◽  
R. A. Selley ◽  
C. J. Cain ◽  
B. B. Taylor

Weed Science ◽  
1998 ◽  
Vol 46 (4) ◽  
pp. 442-446 ◽  
Author(s):  
Graham W. Charles ◽  
Robert D. Murison ◽  
Steven Harden

Competitiveness of noogoora burr and fierce thornapple in irrigated cotton was assessed using area-of-influence methodology. Lint yields were regressed against distances from the weeds using spline regression. The resulting regression curves were used to estimate areas of influence and yield losses, which were further modeled as functions of weed size to understand weed competitiveness. Cotton lint yield reductions averaged 36 and 12%, with maximum distances of influence of 1.71 and 1.65 m for noogoora burr and fierce thornapple, respectively. Economic thresholds for control using hand hoeing were related to weed size. Thresholds for average-size weeds were one cocklebur in 195 m and one fierce thornapple in 73 m of cotton row.


Sign in / Sign up

Export Citation Format

Share Document