Costs Associated with Weed Management in Cereals and Food Legumes in the Chaouia Region of Settat Province, Morocco

1992 ◽  
Vol 6 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Robert L. Zimdahl ◽  
Giles T. Rafsnider ◽  
Mohamed Boughlala ◽  
Abdellila Laamari

Crop enterprise budgets for eight crops prepared from a sample of 131 farms in the Chaouia region of Settat province, Morocco show that weed management is a component of crop production. Although all farmers used herbicides on small grains, weed control was accomplished primarily with hired and family labor. In general, labor is more plentiful than capital and the per hectare cost of using hired labor is low. The percentage of total cash expenditures assigned to weed management averaged more than 5% in each farm size group. However, there was substantial variability among crops. Average hours spent to manage weeds was nearly constant for the three groups. Barley received the least labor and corn or a food legume the most. Farmers of small farms used more family labor and those of large farms used more hired labor.

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason Ferrell ◽  
Gregory MacDonald ◽  
Pratap Devkota

Successful weed control in small grains involves using good management practices in all phases of production. In Florida, winter weeds compete with small grains for moisture, nutrients, and light, with the greatest amount of competition occurring during the first six to eight weeks after planting. Weeds also cause harvest problems the following spring when the small grain is mature. This 4-page publication discusses crop competition, knowing your weeds, and chemical control. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


2004 ◽  
Vol 18 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Thomas R. Hoverstad ◽  
Jeffrey L. Gunsolus ◽  
Gregg A. Johnson ◽  
Robert P. King

Evaluation of economic outcome associated with a given weed management system is an important component in the decision-making process within crop production systems. The objective of this research was to investigate how risk-efficiency criteria could be used to improve herbicide-based weed management decision making, assuming different risk preferences among growers. Data were obtained from existing weed management trials in corn conducted at the University of Minnesota Southern Research and Outreach Center at Waseca. Weed control treatments represented a range of practices including one-pass soil-applied, one-pass postemergence, and sequential combinations of soil and postemergence herbicide application systems. Analysis of risk efficiency across 23 herbicide-based weed control treatments was determined with the mean variance and stochastic dominance techniques. We show how these techniques can result in different outcomes for the decision maker, depending on risk attitudes. For example, mean variance and stochastic dominance techniques are used to evaluate risk associated with one- vs. two-pass herbicide treatments with and without cultivation. Based on these analyses, it appears that a one-pass system is preferred by a risk-averse grower. However, we argue that this may not be the best option considering potential changes in weed emergence patterns, application timing concerns, etc. The techniques for economic analysis of weed control data outlined in this article will help growers match herbicide-based weed management systems to their own production philosophies based on economic risk.


Weed management is a new term for the age-old practice of employing all available means, in a planned way, to keep weed populations under control. It seeks to distinguish the systematic approach to weed control, based on scientific knowledge and rational strategies, from the pragmatic destruction of weeds. The remarkable efficiency of herbicides has in recent years emphasized the latter and allowed revolutionary methods of crop production to be practised. These have, however, led to serious new weed problems which in turn require more intensive herbicide use. The need for a weed management approach is increasingly recognized. New opportunities for this are provided by the availability of numerous herbicides and plant growth regulators and a growing understanding of the biology, ecology and population dynamics of weeds in relation to crop production systems. Examples discussed include: systematic control of grass weeds in intensive cereals in Britain, weed control in rice and in soybeans, the control of aquatic weeds by biological and chemical methods and an experimental zero-tillage cropping system for the humid tropics based on herbicides, growth regulators and ground-cover leguminous crops. In such management systems, interference of weed behaviour by exogenous growth regulators is likely to be of increasing significance. Constraints on the adoption of weed management practices include lack of support for weed science as a discipline, limited appeal to the agrochemical industry and inadequate extension services in many countries.


2018 ◽  
Vol 57 (1) ◽  
pp. 15-28 ◽  
Author(s):  
R. Byrne ◽  
J. Spink ◽  
R. Freckleton ◽  
P. Neve ◽  
S. Barth

AbstractGrass weeds affect arable crops throughout the world, inflicting yield penalties, reducing crop quality and taking available nutrients away from the growing crop. Recently in Ireland, the presence of herbicide resistance in grass weeds has been noted. In order to preserve the sustainability of crop production in Ireland, an integrated pest management approach must be implemented. How this applies to control grass weeds was the focus of this review. Here we examined the state of current research into grass weed biology and the nature of herbicide resistance, identifying gaps in research in the Irish context. We identified a number of cultural grass weed control techniques, as being relevant to the Irish mode of crop production. Crop rotation, cultivation techniques, manipulation of sowing dates and increased crop competition were recognised as useful strategies. Combining these strategies to provide effective grass weed control may be key to reduce dependence on herbicides.


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 31-62 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Sarah M. Ward ◽  
David R. Shaw ◽  
Rick S. Llewellyn ◽  
Robert L. Nichols ◽  
...  

Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1212
Author(s):  
Mahmudul Hasan ◽  
Muhammad Saiful Ahmad-Hamdani ◽  
Adam Mustafa Rosli ◽  
Hafizuddin Hamdan

Weed management is an arduous undertaking in crop production. Integrated weed management, inclusive of the application of bioherbicides, is an emerging weed control strategy toward sustainable agriculture. In general, bioherbicides are derived either from plants containing phytotoxic allelochemicals or certain disease-carrying microbes that can suppress weed populations. While bioherbicides have exhibited great promise in deterring weed seed germination and growth, only a few in vitro studies have been conducted on the physiological responses they evoke in weeds. This review discusses bioherbicide products that are currently available on the market, bioherbicide impact on weed physiology, and potential factors influencing bioherbicide efficacy. A new promising bioherbicide product is introduced at the end of this paper. When absorbed, phytotoxic plant extracts or metabolites disrupt cell membrane integrity and important biochemical processes in weeds. The phytotoxic impact on weed growth is reflected in low levels of root cell division, nutrient absorption, and growth hormone and pigment synthesis, as well as in the development of reactive oxygen species (ROS), stress-related hormones, and abnormal antioxidant activity. The inconsistency of bioherbicide efficacy is a primary factor restricting their widespread use, which is influenced by factors such as bioactive compound content, weed control spectrum, formulation, and application method.


1994 ◽  
Vol 4 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Jeffrey F. Derr

Chemical weed control is an important weed management option in nursery crop production and landscape maintenance. Improved methods of herbicide delivery can increase efficacy of chemical control and minimize off-site movement, applicator exposure, and incorrect herbicide application. Certain innovative technologies show potential for addressing these issues in the nursery industry. Slow-release herbicide tablets have shown promise in container production. Horticultural collars, treated paper, and treated mulch are potential ways of applying herbicides in container crop production and/or landscape maintenance. Horticultural collars contain herbicides between two layers of a carrier such as a landscape fabric. A rapidly degradable paper can be pretreated with an herbicide for a precise application rate. Mulch can be treated with a herbicide prior to use in the landscape for improved weed control. Herbicides applied through the clip-cut pruning system could control weeds selectively in nurseries and landscapes. Each of these methods may address one or more concerns about off-site movement, calibration, and applicator exposure to pesticides.


2018 ◽  
Vol 28 (4) ◽  
pp. 502-508 ◽  
Author(s):  
Lara Abou Chehade ◽  
Marco Fontanelli ◽  
Luisa Martelloni ◽  
Christian Frasconi ◽  
Michele Raffaelli ◽  
...  

A lack of efficient machines and strategies for cropping practices are still problems on small farms and in difficult landscapes, especially in organic crop production. The aim of this study was to develop a new weed control strategy for a typical organic garlic (Allium sativum) grown in Liguria, Italy. Flaming was proposed as an additional tool for the physical weed control program. A field experiment was conducted to test the effects of different flaming doses and timing on weed control and garlic production. The treatments consisted of a broadcast flaming at 16, 22, 37, and 112 kg·ha−1 of liquefied petroleum gas (LPG) at three different crop growth stages—emergence (BBCH 9), three to four leaves (BBCH 13) and six to seven leaves (BBCH 16)—once (at each growth stage separately), twice (at BBCH 9 and BBCH 13, BBCH 9 and BBCH 16, and BBCH 13 and BBCH 16 stages) or three times (all stages combined). Treatments were compared with a weedy control and hand weeding. One flaming treatment was effective in controlling weeds during the growing season. Frequent flaming treatments did not further reduce the weed biomass measured at harvest. A higher production than the weedy control, in terms of the number of marketable bulbs and yield, was obtained for all the flaming interventions carried out at more than 16-kg·ha−1 LPG dose. Garlic flamed once at BBCH 13 at any LPG dose or three times at more than 16 kg·ha−1 led to a comparable number of bulbs as hand weeding. Three flamings at an LPG dose of 22 kg·ha−1 also gave a statistically similar yield to hand weeding. In general, garlic was shown to tolerate up to three flaming treatments without a decline in the production. The decline in yield compared with hand weeding could be offset by the economical savings of the mechanization process and by integrating flaming with other mechanical tools used for weed management.


Agriculture ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 118 ◽  
Author(s):  
Brian Sims ◽  
Sandra Corsi ◽  
Gualbert Gbehounou ◽  
Josef Kienzle ◽  
Makiko Taguchi ◽  
...  

Land degradation and soil fertility deterioration are two of the main causes of agricultural production stagnation and decline in many parts of the world. The model of crop production based on mechanical soil tillage and exposed soils is typically accompanied by negative effects on the natural resource base of the farming environment, which can be so serious that they jeopardize agricultural productive potential in the future. This form of agriculture is destructive to soil health and accelerates the loss of soil by increasing its mineralization and erosion rates. Conservation agriculture, a system avoiding or minimizing soil mechanical disturbance (no-tillage) combined with soil cover and crop diversification, is considered a sustainable agro-ecological approach to resource-conserving agricultural production. A major objective of tillage is supposed to be weed control, and it does not require very specific knowledge because soil inversion controls (at least temporarily) most weeds mechanically (i.e., by way of burying them). However, repeated ploughing only changes the weed population, but does not control weeds in the long term. The same applies to the mechanical uprooting of weeds. While in the short term some tillage operations can control weeds on farms, tillage systems can increase and propagate weeds off-farm. The absence of tillage, under conservation agriculture, requires other measures of weed control. One of the ways in which this is realized is through herbicide application. However, environmental concerns, herbicide resistance and access to appropriate agro-chemicals on the part of resource-poor farmers, highlight the need for alternative weed control strategies that are effective and accessible for smallholders adopting conservation agriculture. Farmers in semi-arid regions contend with the additional challenge of low biomass production and, often, competition with livestock enterprises, which limit the potential weed-suppressing benefits of mulch and living cover crops. This paper reviews the applicability and efficacy of various mechanical, biological and integrated weed management strategies for the effective and sustainable management of weeds in smallholder conservation agriculture systems, including the role of appropriate equipment and prerequisites for smallholders within a sustainable intensification scenario.


Sign in / Sign up

Export Citation Format

Share Document