scholarly journals Discovering implicit constraints in design

Author(s):  
Madan Mohan Dabbeeru ◽  
Amitabha Mukerjee

AbstractDesigners who are experts in a given design domain are well known to be able to Immediately focus on “good designs,” suggesting that they may have learned additional constraints while exploring the design space based on some functional aspects. These constraints, which are often implicit, result in a redefinition of the design space, and may be crucial for discovering chunks or interrelations among the design variables. Here we propose a machine-learning approach for discovering such constraints in supervised design tasks. We develop models for specifying design function in situations where the design has a given structure or embodiment, in terms of a set of performance metrics that evaluate a given design. The functionally feasible regions, which are those parts of the design space that demonstrate high levels of performance, can now be learned using any general purpose function approximator. We demonstrate this process using examples from the design of simple locking mechanisms, and as in human experience, we show that the quality of the constraints learned improves with greater exposure in the design space. Next, we consider changing the embodiment and suggest that similar embodiments may have similar abstractions. To explore convergence, we also investigate the variability in time and error rates where the experiential patterns are significantly different. In the process, we also consider the situation where certain functionally feasible regions may encode lower dimensional manifolds and how this may relate to cognitive chunking.

Author(s):  
Madara M. Ogot ◽  
Satnam Alag

Abstract This paper presents a stochastic based methodology for the optimal synthesis of planar mechanisms. The approach is fully automated, relatively simple to use and flexible. The methodology employs an analytical synthesis approach based on the complex number theory, to synthesize the desired mechanism based on a relatively small number of prescribed positions (hard precision points – satisfied exactly). The quality of the synthesized mechanism is then optimized at an arbitrary number of prescribed positions (soft precision points – approximately satisfied). In this manner, the number of design variables is kept relatively low without compromising on the quality of the final solution. A ‘global’ stochastic optimization approach is employed to assign values to the free choices in the analytical synthesis portion, thereby effectively guiding the design process through the often highly non-linear design space. Thus the problems associated with local minima are addressed and automation is achieved. In addition, this work investigates the feasibility of considering some of the hard precision points as design variables (variable hard precision points).


2017 ◽  
Vol 1 (3) ◽  
pp. 54
Author(s):  
BOUKELLOUZ Wafa ◽  
MOUSSAOUI Abdelouahab

Background: Since the last decades, research have been oriented towards an MRI-alone radiation treatment planning (RTP), where MRI is used as the primary modality for imaging, delineation and dose calculation by assigning to it the needed electron density (ED) information. The idea is to create a computed tomography (CT) image or so-called pseudo-CT from MRI data. In this paper, we review and classify methods for creating pseudo-CT images from MRI data. Each class of methods is explained and a group of works in the literature is presented in detail with statistical performance. We discuss the advantages, drawbacks and limitations of each class of methods. Methods: We classified most recent works in deriving a pseudo-CT from MR images into four classes: segmentation-based, intensity-based, atlas-based and hybrid methods. We based the classification on the general technique applied in the approach. Results: Most of research focused on the brain and the pelvis regions. The mean absolute error (MAE) ranged from 80 HU to 137 HU and from 36.4 HU to 74 HU for the brain and pelvis, respectively. In addition, an interest in the Dixon MR sequence is increasing since it has the advantage of producing multiple contrast images with a single acquisition. Conclusion: Radiation therapy field is emerging towards the generalization of MRI-only RT thanks to the advances in techniques for generation of pseudo-CT images. However, a benchmark is needed to set in common performance metrics to assess the quality of the generated pseudo-CT and judge on the efficiency of a certain method.


2021 ◽  
pp. 1-8
Author(s):  
Alice K. Silbergleit ◽  
Lonni Schultz ◽  
Kendra Hamilton ◽  
Peter A. LeWitt ◽  
Christos Sidiropoulos

Background: Hypokinetic dysarthria and dysphagia are known features of Parkinson’s disease; however, self-perception of their handicapping effects on emotional, physical, and functional aspects of quality of life over disease duration is less understood. Objective: 1) Based upon patient self-perception, to determine the relationship of the handicapping effects of dysphagia and dysphonia with time since diagnosis in individuals with Parkinson’s disease; 2)To determine if there is a relationship between voice and swallowing handicap throughout the course of Parkinson’s disease. Method: 277 subjects completed the Dysphagia Handicap Index and the Voice Handicap Index. Subjects were divided into three groups based on disease duration: 0–4 years, 5–9 years, and 10 + years. Results: Subjects in the longer duration group identified significantly greater perceptions of voice and swallowing handicap compared to the shorter duration groups. There was a significant positive correlation between the DHI and VHI. Conclusion: Self-perception of swallowing and voice handicap in Parkinson’s disease are associated with later stages of disease and progress in a linear fashion. Self-perception of voice and swallowing handicap parallel each other throughout disease progression in Parkinson’s disease. Individuals may be able to compensate for changes in voice and swallowing early while sensory perceptual feedback is intact. Results support early targeted questioning of patient self-perception of voice and swallowing handicap as identification of one problem indicates awareness of the other, thus creating an opportunity for early treatment and maintenance of swallowing and communication quality of life for as long as possible.


Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra ◽  
Timothy G. Hunter

This paper presents a comprehensive model to capture the dynamics of a motorcycle system in order to evaluate the quality of vibration isolation. The two main structural components in the motorcycle assembly - the frame and the swing-arm - are modeled using reduced order finite element models; the power-train assembly is modeled as a six degree-of-freedom (DOF) rigid body connected to the frame through the engine mounts and to the swing-arm through a shaft assembly. The engine mounts are modeled as tri-axial spring-damper systems. Models of the front-end assembly as well as front and rear tires are also included in the overall model. The complete vehicle model is used to solve the engine mount optimization problem so as to minimize the total force transmitted to the frame while meeting packaging and other side constraints. The mount system parameters - stiffness, position and orientation vectors - are used as design variables for the optimization problem. The imposed loads include forces and moments due to engine imbalance as well as loads transmitted due to irregularities in the road surface through the tire patch.


2009 ◽  
Vol 43 (2) ◽  
pp. 48-60 ◽  
Author(s):  
M. Martz ◽  
W. L. Neu

AbstractThe design of complex systems involves a number of choices, the implications of which are interrelated. If these choices are made sequentially, each choice may limit the options available in subsequent choices. Early choices may unknowingly limit the effectiveness of a final design in this way. Only a formal process that considers all possible choices (and combinations of choices) can insure that the best option has been selected. Complex design problems may easily present a number of choices to evaluate that is prohibitive. Modern optimization algorithms attempt to navigate a multidimensional design space in search of an optimal combination of design variables. A design optimization process for an autonomous underwater vehicle is developed using a multiple objective genetic optimization algorithm that searches the design space, evaluating designs based on three measures of performance: cost, effectiveness, and risk. A synthesis model evaluates the characteristics of a design having any chosen combination of design variable values. The effectiveness determined by the synthesis model is based on nine attributes identified in the U.S. Navy’s Unmanned Undersea Vehicle Master Plan and four performance-based attributes calculated by the synthesis model. The analytical hierarchy process is used to synthesize these attributes into a single measure of effectiveness. The genetic algorithm generates a set of Pareto optimal, feasible designs from which a decision maker(s) can choose designs for further analysis.


2019 ◽  
Vol 36 (3) ◽  
pp. 245-256
Author(s):  
Yoonki Kim ◽  
Sanga Lee ◽  
Kwanjung Yee ◽  
Young-Seok Kang

Abstract The purpose of this study is to optimize the 1st stage of the transonic high pressure turbine (HPT) for enhancement of aerodynamic performance. Isentropic total-to-total efficiency is designated as the objective function. Since the isentropic efficiency can be improved through modifying the geometry of vane and rotor blade, lean angle and sweep angle are chosen as design variables, which can effectively alter the blade geometry. The sensitivities of each design variable are investigated by applying lean and sweep angles to the base nozzle and rotor, respectively. The design space is also determined based on the results of the parametric study. For the design of experiment (DoE), Optimal Latin Hypercube sampling is adopted, so that 25 evenly distributed samples are selected on the design space. Sequentially, based on the values from the CFD calculation, Kriging surrogate model is constructed and refined using Expected Improvement (EI). With the converged surrogate model, optimum solution is sought by using the Genetic Algorithm. As a result, the efficiency of optimum turbine 1st stage is increased by 1.07 % point compared to that of the base turbine 1st stage. Also, the blade loading, pressure distribution, static entropy, shock structure, and secondary flow are thoroughly discussed.


1979 ◽  
Vol 73 (10) ◽  
pp. 389-399
Author(s):  
Gregory L. Goodrich ◽  
Richard R. Bennett ◽  
William R. De L'aune ◽  
Harvey Lauer ◽  
Leonard Mowinski

This study was designed to assess the Kurzweil Reading Machine's ability to read three different type styles produced by five different means. The results indicate that the Kurzweil Reading Machines tested have different error rates depending upon the means of producing the copy and upon the type style used; there was a significant interaction between copy method and type style. The interaction indicates that some type styles are better read when the copy is made by one means rather than another. Error rates varied between less than one percent and more than twenty percent. In general, the user will find that high quality printed materials will be read with a relatively high level of accuracy, but as the quality of the material decreases, the number of errors made by the machine also increases. As this error rate increases, the user will find it increasingly difficult to understand the spoken output.


Author(s):  
Sudhakar Y. Reddy

Abstract This paper describes HIDER, a methodology that enables detailed simulation models to be used during the early stages of system design. HIDER uses a machine learning approach to form abstract models from the detailed models. The abstract models are used for multiple-objective optimization to obtain sets of non-dominated designs. The tradeoffs between design and performance attributes in the non-dominated sets are used to interactively refine the design space. A prototype design tool has been developed to assist the designer in easily forming abstract models, flexibly defining optimization problems, and interactively exploring and refining the design space. To demonstrate the practical applicability of this approach, the paper presents results from the application of HIDER to the system-level design of a wheel loader. In this demonstration, complex simulation models for cycle time evaluation and stability analysis are used together for early-stage exploration of design space.


Author(s):  
Gediminas Adomavicius ◽  
Yaqiong Wang

Numerical predictive modeling is widely used in different application domains. Although many modeling techniques have been proposed, and a number of different aggregate accuracy metrics exist for evaluating the overall performance of predictive models, other important aspects, such as the reliability (or confidence and uncertainty) of individual predictions, have been underexplored. We propose to use estimated absolute prediction error as the indicator of individual prediction reliability, which has the benefits of being intuitive and providing highly interpretable information to decision makers, as well as allowing for more precise evaluation of reliability estimation quality. As importantly, the proposed reliability indicator allows the reframing of reliability estimation itself as a canonical numeric prediction problem, which makes the proposed approach general-purpose (i.e., it can work in conjunction with any outcome prediction model), alleviates the need for distributional assumptions, and enables the use of advanced, state-of-the-art machine learning techniques to learn individual prediction reliability patterns directly from data. Extensive experimental results on multiple real-world data sets show that the proposed machine learning-based approach can significantly improve individual prediction reliability estimation as compared with a number of baselines from prior work, especially in more complex predictive scenarios.


Sign in / Sign up

Export Citation Format

Share Document