scholarly journals Analysis of potential changes in seriousness of influenza A and B viruses in Hong Kong from 2001 to 2011

2014 ◽  
Vol 143 (4) ◽  
pp. 766-771 ◽  
Author(s):  
J. Y. WONG ◽  
P. WU ◽  
E. GOLDSTEIN ◽  
E. H. Y. LAU ◽  
D. K. M. IP ◽  
...  

SUMMARYContinued monitoring of the seriousness of influenza viruses is a public health priority. We applied time-series regression models to data on cardio-respiratory mortality rates in Hong Kong from 2001 to 2011. We used surveillance data on outpatient consultations for influenza-like illness, and laboratory detections of influenza types/subtypes to construct proxy measures of influenza activity. In the model we allowed the regression coefficients for influenza to drift over time, and adjusted for temperature and humidity. The regression coefficient for influenza A(H3N2) increased significantly in 2005. The regression coefficients for influenza A(H1N1) and B were relatively stable over the period. Our model suggested an increase in seriousness of A(H3N2) in 2005, the year after the appearance of the A/Fujian/411/2002(H3N2)-like virus when the drifted A/California/7/2004(H3N2)-like virus appeared. Ongoing monitoring of mortality and influenza activity could permit identification of future changes in seriousness of influenza virus infections.

2015 ◽  
Vol 144 (8) ◽  
pp. 1579-1583
Author(s):  
J. Y. WONG ◽  
P. WU ◽  
E. H. Y. LAU ◽  
T. K. TSANG ◽  
V. J. FANG ◽  
...  

SUMMARYDuring the early stage of an epidemic, timely and reliable estimation of the severity of infections are important for predicting the impact that the influenza viruses will have in the population. We obtained age-specific deaths and hospitalizations for patients with laboratory-confirmed H1N1pdm09 infections from June 2009 to December 2009 in Hong Kong. We retrospectively obtained the real-time estimates of the hospitalization fatality risk (HFR), using crude estimation or allowing for right-censoring for final status in some patients. Models accounting for right-censoring performed better than models without adjustments. The risk of deaths in hospitalized patients with confirmed H1N1pdm09 increased with age. Reliable estimates of the HFR could be obtained before the peak of the first wave of H1N1pdm09 in young and middle-aged adults but after the peak in the elderly. In the next influenza pandemic, timely estimation of the HFR will contribute to risk assessment and disease control.


Author(s):  
Benjamin J. Cowling ◽  
Sheikh Taslim Ali ◽  
Tiffany W. Y. Ng ◽  
Tim K. Tsang ◽  
Julian C. M. Li ◽  
...  

ABSTRACTBackgroundA range of public health measures have been implemented to delay and reduce local transmission of COVID-19 in Hong Kong, and there have been major changes in behaviours of the general public. We examined the effect of these interventions and behavioral changes on the incidence of COVID-19 as well as on influenza virus infections which may share some aspects of transmission dynamics with COVID-19.MethodsWe reviewed policy interventions and measured changes in population behaviours through two telephone surveys, on January 20-23 and February 11-14. We analysed data on laboratory-confirmed COVID-19 cases, influenza surveillance data in outpatients of all ages, and influenza hospitalisations in children. We estimated the daily effective reproduction number (Rt), for COVID-19 and influenza A(H1N1).FindingsCOVID-19 transmissibility has remained at or below 1, indicating successful containment to date. Influenza transmission declined substantially after the implementation of social distancing measures and changes in population behaviours in late January, with a 44% (95% confidence interval, CI: 34% to 53%) reduction in transmissibility in the community, and a 33% (95% CI: 24% to 43%) reduction in transmissibility based on paediatric hospitalization rates. In the two surveys we estimated that 74.5% and 97.5% of the general adult population wore masks when going out, and 61.3% and 90.2% avoided going to crowded places, respectively.ImplicationsContainment measures, social distancing measures and changes in population behaviour have successfully prevented spread of COVID-19. The social distancing measures and behavioural changes led to a substantial reduction in influenza transmission in early February 2020. However, it may be challenging to avoid fatigue and sustain these measures and population behaviours as COVID-19 continues to spread globally.FundingHealth and Medical Research Fund, Hong Kong


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-2
Author(s):  
Bishnu Prasad Upadhyay

Influenza virus type A and B are responsible for seasonal epidemics as well as pandemics in human. Influenza A viruses are further divided into two major groups namely, low pathogenic seasonal influenza (A/H1N1, A/H1N1 pdm09, A/H3N2) and highly pathogenic influenza virus (H5N1, H5N6, H7N9) on the basis of two surface antigens: hemagglutinin (HA) and neuraminidase (NA). Mutations, including substitutions, deletions, and insertions, are one of the most important mechanisms for producing new variant of influenza viruses. During the last 30 years; more than 50 viral threat has been evolved in South-East Asian countriesof them influenza is one of the major emerging and re-emerging infectious diseases of global concern. Similar to tropical and sub-tropical countries of Southeast Asia; circulation of A/H1N1 pdm09, A/H3N2 and influenza B has been circulating throughout the year with the peak during July-November in Nepal. However; the rate of infection transmission reach peak during the post-rain and winter season of Nepal.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650003 ◽  
Author(s):  
Islam A. Moneim

Influenza H1N1 has been found to exhibit oscillatory levels of incidence in large populations. Clear peaks for influenza H1N1 are observed in several countries including Vietnam each year [M. F. Boni, B. H. Manh, P. Q. Thai, J. Farrar, T. Hien, N. T. Hien, N. Van Kinh and P. Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Med. 7 (2009) 43, Doi: 10.1186/1741-7015-7-43]. So it is important to study seasonal forces and factors which can affect the transmission of this disease. This paper studies an SIRS epidemic model with seasonal vaccination rate. This SIRS model has a unique disease-free solution (DFS). The value R0, the basic reproduction number is obtained when the vaccination is a periodic function. Stability results for the DFS are obtained when R0 < 1. The disease persists in the population and remains endemic if R0 > 1. Also when R0 > 1 existence of a nonzero periodic solution is proved. These results obtained for our model when the vaccination strategy is a non-constant time-dependent function.


2005 ◽  
Vol 79 (15) ◽  
pp. 9926-9932 ◽  
Author(s):  
Kyoko Shinya ◽  
Masato Hatta ◽  
Shinya Yamada ◽  
Ayato Takada ◽  
Shinji Watanabe ◽  
...  

ABSTRACT In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans.


2001 ◽  
Vol 45 (3) ◽  
pp. 749-757 ◽  
Author(s):  
Robert W. Sidwell ◽  
Donald F. Smee ◽  
John H. Huffman ◽  
Dale L. Barnard ◽  
Kevin W. Bailey ◽  
...  

ABSTRACT The cyclopentane influenza virus neuraminidase inhibitor RWJ-270201 was evaluated against influenza A/NWS/33 (H1N1), A/Shangdong/09/93 (H3N2), A/Victoria/3/75 (H3N2), and B/Hong Kong/05/72 virus infections in mice. Treatment was by oral gavage twice daily for 5 days beginning 4 h pre-virus exposure. The influenza virus inhibitor oseltamivir was run in parallel, and ribavirin was included in studies with the A/Shangdong and B/Hong Kong viruses. RWJ-270201 was inhibitory to all infections using doses as low as 1 mg/kg/day. Oseltamivir was generally up to 10-fold less effective than RWJ-270201. Ribavirin was also inhibitory but was less tolerated by the mice at the 75-mg/kg/day dose used. Disease-inhibitory effects included prevention of death, lessening of decline of arterial oxygen saturation, inhibition of lung consolidation, and reduction in lung virus titers. RWJ-270201 and oseltamivir, at doses of 10 and 1 mg/kg/day each, were compared with regard to their effects on daily lung parameters in influenza A/Shangdong/09/93 virus-infected mice. Maximum virus titer inhibition was seen on day 1, with RWJ-270201 exhibiting the greater inhibitory effect, a titer reduction of >104 cell culture 50% infective doses (CCID50)/g. By day 8, the lung virus titers in mice treated with RWJ-270201 had declined to 101.2 CCID50/g, whereas titers from oseltamivir-treated animals were >103CCID50/g. Mean lung consolidation was also higher in the oseltamivir-treated animals on day 8. Both neuraminidase inhibitors were well tolerated by the mice. RWJ-270201 was nontoxic at doses as high as 1,000 mg/kg/day. These data indicate potential for the oral use of RWJ-270201 in the treatment of influenza virus infections in humans.


Author(s):  
Diqi Yang ◽  
Minghua Hu ◽  
Hongmei Zhu ◽  
Jianguo Chen ◽  
Dehai Wang ◽  
...  

Abstract The pandemic influenza A (H1N1) virus spread globally and posed one of the most serious global public health challenges. The traditional Chinese medicine is served as a complementary treatment strategy with vaccine immunization. Here, we demonstrated the mixed polysaccharides (MPs) derived from shiitake mushroom, poriacocos, ginger and tyangerine peel prevent the H1N1 virus infections in mice. MPs pretreatment attenuated H1N1 virus-induced weight loss, clinical symptoms and death. The lymphocytes detection results showed the CD3+, CD19+ and CD25+ cell proportions were up-regulated in thymus under MPs pretreatment. Besides, MPs pretreatment reduced the inflammatory cell infiltration and increased the cell proportions of CD19+, CD25+ and CD278+ in lung. However, MPs treatment have no effective therapeutic effect after H1N1 virus challenge. The current study suggested that pretreatment with MPs could attenuate H1N1 virus-induced lung injury and up-regulate humoral and cellular immune responses in non- immunized mice.


2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Babasaheb V Tandale ◽  
Shailesh D Pawar ◽  
Yogesh K Gurav ◽  
Mandeep S Chadha ◽  
Santosh S Koratkar ◽  
...  

Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


Sign in / Sign up

Export Citation Format

Share Document