Modeling and simulation of the spread of H1N1 flu with periodic vaccination

2015 ◽  
Vol 09 (01) ◽  
pp. 1650003 ◽  
Author(s):  
Islam A. Moneim

Influenza H1N1 has been found to exhibit oscillatory levels of incidence in large populations. Clear peaks for influenza H1N1 are observed in several countries including Vietnam each year [M. F. Boni, B. H. Manh, P. Q. Thai, J. Farrar, T. Hien, N. T. Hien, N. Van Kinh and P. Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Med. 7 (2009) 43, Doi: 10.1186/1741-7015-7-43]. So it is important to study seasonal forces and factors which can affect the transmission of this disease. This paper studies an SIRS epidemic model with seasonal vaccination rate. This SIRS model has a unique disease-free solution (DFS). The value R0, the basic reproduction number is obtained when the vaccination is a periodic function. Stability results for the DFS are obtained when R0 < 1. The disease persists in the population and remains endemic if R0 > 1. Also when R0 > 1 existence of a nonzero periodic solution is proved. These results obtained for our model when the vaccination strategy is a non-constant time-dependent function.

2018 ◽  
Vol 3 (2) ◽  
pp. 1-2
Author(s):  
Bishnu Prasad Upadhyay

Influenza virus type A and B are responsible for seasonal epidemics as well as pandemics in human. Influenza A viruses are further divided into two major groups namely, low pathogenic seasonal influenza (A/H1N1, A/H1N1 pdm09, A/H3N2) and highly pathogenic influenza virus (H5N1, H5N6, H7N9) on the basis of two surface antigens: hemagglutinin (HA) and neuraminidase (NA). Mutations, including substitutions, deletions, and insertions, are one of the most important mechanisms for producing new variant of influenza viruses. During the last 30 years; more than 50 viral threat has been evolved in South-East Asian countriesof them influenza is one of the major emerging and re-emerging infectious diseases of global concern. Similar to tropical and sub-tropical countries of Southeast Asia; circulation of A/H1N1 pdm09, A/H3N2 and influenza B has been circulating throughout the year with the peak during July-November in Nepal. However; the rate of infection transmission reach peak during the post-rain and winter season of Nepal.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2009 ◽  
Vol 14 (21) ◽  
Author(s):  
A Solovyov ◽  
G Palacios ◽  
T Briese ◽  
W I Lipkin ◽  
R Rabadan

In March and April 2009, a new strain of influenza A(H1N1) virus has been isolated in Mexico and the United States. Since the initial reports more than 10,000 cases have been reported to the World Health Organization, all around the world. Several hundred isolates have already been sequenced and deposited in public databases. We have studied the genetics of the new strain and identified its closest relatives through a cluster analysis approach. We show that the new virus combines genetic information related to different swine influenza viruses. Segments PB2, PB1, PA, HA, NP and NS are related to swine H1N2 and H3N2 influenza viruses isolated in North America. Segments NA and M are related to swine influenza viruses isolated in Eurasia.


2014 ◽  
Vol 63 (12) ◽  
pp. 1626-1637 ◽  
Author(s):  
Mara L. Russo ◽  
Andrea V. Pontoriero ◽  
Estefania Benedetti ◽  
Andrea Czech ◽  
Martin Avaro ◽  
...  

This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed during the study period. The virological surveillance showed that the majority of the circulating strains during the study period were antigenically related to the corresponding Southern Hemisphere vaccine strains except for the 2012 A(H3N2) viruses.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sara Jones ◽  
Shijulal Nelson-Sathi ◽  
Yejun Wang ◽  
Raji Prasad ◽  
Sabrina Rayen ◽  
...  

Abstract Influenza A (H1N1) continues to be a major public health threat due to possible emergence of a more virulent H1N1 strain resulting from dynamic changes in virus adaptability consequent to functional mutations and antigenic drift in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In this study, we describe the genetic and evolutionary characteristics of H1N1 strains that circulated in India over a period of nine years from 2009 to 2017 in relation to global strains. The finding is important from a global perspective since previous phylogenetic studies have suggested that the tropics contributed substantially to the global circulation of influenza viruses. Bayesian phylogenic analysis of HA sequences along with global strains indicated that there is a temporal pattern of H1N1 evolution and clustering of Indian isolates with globally circulating strains. Interestingly, we observed four new amino acid substitutions (S179N, I233T, S181T and I312V) in the HA sequence of H1N1 strains isolated during 2017 and two (S181T and I312V) were found to be unique in Indian isolates. Structurally these two unique mutations could lead to altered glycan specificity of the HA gene. Similarly, sequence and structural analysis of NA domain revealed that the presence of K432E mutation in H1N1 strains isolated after 2015 from India and in global strains found to induce a major loop shift in the vicinity of the catalytic site. The findings presented here offer an insight as to how these acquired mutations could be associated to an improved adaptability of the virus for efficient human transmissibility.


2017 ◽  
Vol 15 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Bishu Prasad Upadhyay ◽  
Prakash Ghimire ◽  
Masato Tashiro ◽  
Mogha Raj Banjara

Background: Influenza is one of the public health burdens in Nepal and its epidemiology is not clearly understood. The objective of this study was to explore the molecular epidemiology and the antigenic characteristics of the circulating influenza viruses in Nepal.Methods: A total of 1495 throat swab specimens were collected from January to December, 2014. Real time PCR assay was used for identification of influenza virus types and subtypes. Ten percent of the positive specimens were randomly selected and inoculated onto Madin-Darby Canine Kidney Epithelial cells (MDCK) for influenza virus isolation. All viruses were characterized by the hemagglutination inhibition (HI) assay.Results: Influenza viruses were detected in 421/1495 (28.2%) specimens. Among positive cases, influenza A virus was detected in 301/421 (71.5%); of which 120 (39.9%) were influenza A/H1N1 pdm09 and 181 (60.1%) were influenza A/H3 subtype. Influenza B viruses were detected in 119/421 (28.3%) specimens. Influenza A/H1N1 pdm09, A/H3 and B viruses isolated in Nepal were antigenically similar to the vaccine strain influenza A/California/07/2009(H1N1pdm09), A/Texas/50/2012(H3N2), A/New York/39/2012(H3N2) and B/Massachusetts/2/2012, respectively.Conclusions: Influenza viruses were reported year-round in different geographical regions of Nepal which was similar to other tropical countries. The circulating influenza virus type and subtypes of Nepal were similar to vaccine candidate virus which could be prevented by currently used influenza vaccine.


2010 ◽  
Vol 17 (12) ◽  
pp. 1998-2006 ◽  
Author(s):  
Ali H. Ellebedy ◽  
Thomas P. Fabrizio ◽  
Ghazi Kayali ◽  
Thomas H. Oguin ◽  
Scott A. Brown ◽  
...  

ABSTRACT Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8+ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.


2014 ◽  
Vol 9 (5) ◽  
pp. 842-847
Author(s):  
Reiko Saito ◽  
◽  
Yadanar Kyaw ◽  
Yi Yi Myint ◽  
Clyde Dapat ◽  
...  

The epidemiological study of influenza in Southeast Asia is limited. We surveyed influenza in Myanmar from 2007 to 2013. Nasopharyngeal swabs were collected from patients in the two cities of Yangon and Nay Pyi Taw. Samples were screened using rapid influenza diagnostic kits and identified by virus isolation. Isolates were characterized by cyclingprobe-based real-time PCR, drug susceptibility assay, and sequencing. Samples collected numbered 5,173, from which 1,686 influenza viruses were isolated during the seven-year study period. Of these, 187 strains were of seasonal influenza A(H1N1), 274 of influenza A(H1N1)pdm09, 791 of influenza A(H3N2), and 434 of influenza B. Interestingly, two zanamivir and amantadine-resistant strains each were detected in 2007 and 2008. These rare dual-resistant strains had a Q136K mutation in the NA protein and S31N substitution in the M2 protein. Our collaboration raised the influenza surveillance laboratory capacity in Myanmar and led Yangon’s National Health Laboratory – one of the nation’s leading research institutes – to being designated a National Influenza Center by the World Health Organization.


2015 ◽  
Vol 144 (8) ◽  
pp. 1579-1583
Author(s):  
J. Y. WONG ◽  
P. WU ◽  
E. H. Y. LAU ◽  
T. K. TSANG ◽  
V. J. FANG ◽  
...  

SUMMARYDuring the early stage of an epidemic, timely and reliable estimation of the severity of infections are important for predicting the impact that the influenza viruses will have in the population. We obtained age-specific deaths and hospitalizations for patients with laboratory-confirmed H1N1pdm09 infections from June 2009 to December 2009 in Hong Kong. We retrospectively obtained the real-time estimates of the hospitalization fatality risk (HFR), using crude estimation or allowing for right-censoring for final status in some patients. Models accounting for right-censoring performed better than models without adjustments. The risk of deaths in hospitalized patients with confirmed H1N1pdm09 increased with age. Reliable estimates of the HFR could be obtained before the peak of the first wave of H1N1pdm09 in young and middle-aged adults but after the peak in the elderly. In the next influenza pandemic, timely estimation of the HFR will contribute to risk assessment and disease control.


2017 ◽  
Vol 145 (16) ◽  
pp. 3345-3360 ◽  
Author(s):  
O. A. ADEOLA ◽  
B. O. OLUGASA ◽  
B. O. EMIKPE

SUMMARYIn the post-pandemic period, influenza A(H1N1)pdm09 virus has been detected in swine populations in different parts of the world. This study was conducted to determine the presence and spatial patterns of this human pandemic virus among Nigerian pigs and identify associated risk factors. Using a two-stage stratified random sampling method, nasal swab specimens were obtained from pigs in Ibadan, Nigeria during the 2013–2014 and 2014–2015 influenza seasons, and the virus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Purified RT-PCR products were sequenced in both directions, and sequences were aligned using MUSCLE. Phylogenetic analysis was conducted in MEGA6. Purely spatial scan statistics and a spatial lag regression model were used to identify spatial clusters and associated risk factors. The virus was detected in both seasons, with an overall prevalence of 8·7%. Phylogenetic analyses revealed that the M genes were similar to those of pandemic strains which circulated in humans prior to and during the study. Cluster analysis revealed a significant primary spatial cluster (RR = 4·71, LLR = 5·66,P= 0·0046), while ‘hours spent with pigs (R2= 0·90,P= 0·0018)’ and ‘hours spent with pigs from different farms (R2= 0·91,P= 0·0001)’ were identified as significant risk factors (P< 0·05). These findings reveal that there is considerable risk of transmission of the pandemic virus, either directly from pig handlers or through fomites, to swine herds in Ibadan, Nigeria. Active circulation of the virus among Nigerian pigs could enhance its reassortment with endemic swine influenza viruses. Campaigns for adoption of biosecurity measures in West African piggeries and abattoirs should be introduced and sustained in order to prevent the emergence of a new influenza epicentre in the sub-region.


Sign in / Sign up

Export Citation Format

Share Document