scholarly journals Lag effect of climatic variables on dengue burden in India

2019 ◽  
Vol 147 ◽  
Author(s):  
Satya Ganesh Kakarla ◽  
Cyril Caminade ◽  
Srinivasa Rao Mutheneni ◽  
Andrew P Morse ◽  
Suryanaryana Murty Upadhyayula ◽  
...  

AbstractDengue is a widespread vector-borne disease believed to affect between 100 and 390 million people every year. The interaction between vector, host and pathogen is influenced by various climatic factors and the relationship between dengue and climatic conditions has been poorly explored in India. This study explores the relationship between El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and dengue cases in India. Additionally, distributed lag non-linear model was used to assess the delayed effects of climatic factors on dengue cases. The weekly dengue cases reported by the Integrated Disease Surveillance Program (IDSP) over India during the period 2010–2017 were analysed. The study shows that dengue cases usually follow a seasonal pattern, with most cases reported in August and September. Both temperature and rainfall were positively associated with the number of dengue cases. The precipitation shows the higher transmission risk of dengue was observed between 8 and 15 weeks of lag. The highest relative risk (RR) of dengue was observed at 60 mm rainfall with a 12-week lag period when compared with 40 and 80 mm rainfall. The RR of dengue tends to increase with increasing mean temperature above 24 °C. The largest transmission risk of dengue was observed at 30 °C with a 0–3 weeks of lag. Similarly, the transmission risk increases more than twofold when the minimum temperature reaches 26 °C with a 2-week lag period. The dengue cases and El Niño were positively correlated with a 3–6 months lag period. The significant correlation observed between the IOD and dengue cases was shown for a 0–2 months lag period.

Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


2019 ◽  
Vol 20 (2) ◽  
pp. 6
Author(s):  
Wayan Mita Restitiasih ◽  
I Ketut Sukarasa ◽  
I Wayan Andi Yuda

A correlation study of the Southern Oscillation Index (SOI) on rainfall at the peak of the wet and dry season in the Kintamani-Bangli region has been carried out by taking SOI values and rainfall data for the period 1986-2015. The rainfall data used were recorded at 2 rain posts, namely Kembangsari and Kintamani. The research aimed to determine the relationship of fluctuations in the value of SOI with the intensity of rainfall, so that it can be used as a regional management plan when El Nino occurs. The method used in this study is correlation. The results obtained from the correlation that is the relationship between SOI value and rainfall in February were quite strong in the Kembangsari post with correlation coefficient of 0.409. Whereas for the Kintamani post the correlation obtained was weak with a correlation coefficient of 0.308. Then in August a weak correlation occurred in the Kembangsari post with a correlation coefficient of 0.2398 and was quite strong in the Kintamani post with a correlation coefficient of 0.4662. So that the influence of El Nino in the Kintamani area in February was more dominant in the Kembangsari post and in August at the Kintamani post.


2018 ◽  
Vol 31 (15) ◽  
pp. 6189-6207 ◽  
Author(s):  
Scott B. Power ◽  
François P. D. Delage

Increases in greenhouse gas emissions are expected to cause changes both in climatic variability in the Pacific linked to El Niño–Southern Oscillation (ENSO) and in long-term average climate. While mean state and variability changes have been studied separately, much less is known about their combined impact or relative importance. Additionally, studies of projected changes in ENSO have tended to focus on changes in, or adjacent to, the Pacific. Here we examine projected changes in climatic conditions during El Niño years and in ENSO-driven precipitation variability in 36 CMIP5 models. The models are forced according to the RCP8.5 scenario in which there are large, unmitigated increases in greenhouse gas concentrations during the twenty-first century. We examine changes over much of the globe, including 25 widely spread regions defined in the IPCC special report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). We confirm that precipitation variability associated with ENSO is projected to increase in the tropical Pacific, consistent with earlier research. We also find that the enhanced tropical Pacific variability drives ENSO-related variability increases in 19 SREX regions during DJF and in 18 during JJA. This externally forced increase in ENSO-driven precipitation variability around the world is on the order of 15%–20%. An increase of this size, although substantial, is easily masked at the regional level by internally generated multidecadal variability in individual runs. The projected changes in El Niño–driven precipitation variability are typically much smaller than projected changes in both mean state and ENSO neutral conditions in nearly all regions.


2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2007 ◽  
Vol 20 (20) ◽  
pp. 5164-5177 ◽  
Author(s):  
Ying Li ◽  
Riyu Lu ◽  
Buwen Dong

Abstract In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle. By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.


2016 ◽  
Vol 29 (5) ◽  
pp. 1797-1808 ◽  
Author(s):  
Lee J. Welhouse ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
Gregory J. Tripoli ◽  
Matthew H. Hitchman

Abstract Previous investigations of the relationship between El Niño–Southern Oscillation (ENSO) and the Antarctic climate have focused on regions that are impacted by both El Niño and La Niña, which favors analysis over the Amundsen and Bellingshausen Seas (ABS). Here, 35 yr (1979–2013) of European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data are analyzed to investigate the relationship between ENSO and Antarctica for each season using a compositing method that includes nine El Niño and nine La Niña periods. Composites of 2-m temperature (T2m), sea level pressure (SLP), 500-hPa geopotential height, sea surface temperatures (SST), and 300-hPa geopotential height anomalies were calculated separately for El Niño minus neutral and La Niña minus neutral conditions, to provide an analysis of features associated with each phase of ENSO. These anomaly patterns can differ in important ways from El Niño minus La Niña composites, which may be expected from the geographical shift in tropical deep convection and associated pattern of planetary wave propagation into the Southern Hemisphere. The primary new result is the robust signal, during La Niña, of cooling over East Antarctica. This cooling is found from December to August. The link between the southern annular mode (SAM) and this cooling is explored. Both El Niño and La Niña experience the weakest signal during austral autumn. The peak signal for La Niña occurs during austral summer, while El Niño is found to peak during austral spring.


2017 ◽  
Vol 114 (17) ◽  
pp. 4436-4441 ◽  
Author(s):  
Sean M. Moore ◽  
Andrew S. Azman ◽  
Benjamin F. Zaitchik ◽  
Eric D. Mintz ◽  
Joan Brunkard ◽  
...  

The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa—and away from Madagascar and portions of southern, Central, and West Africa—where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño’s impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.


2020 ◽  
Vol 33 (11) ◽  
pp. 4679-4695 ◽  
Author(s):  
Xin Geng ◽  
Wenjun Zhang ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker ◽  
Aaron F. Z. Levine

AbstractRecent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Rodrigo Augusto Ferreira de Souza ◽  
Rita Valéria Andreoli ◽  
Mary Toshie Kayano ◽  
Afrânio Lima Carvalho

A temporal series of the normalized difference vegetation index (NDVI) and other environmental parameters covering the years 2002- 2009 was used for the study of the potential association between the climate and the number of cases of American cutaneous leishmaniasis (CL) in Manaus Metropolitan Region (MMR), State of Amazonas, Brazil. The results show that CL has a marked seasonality and a strong linkage with local climate conditions. Dry and warm conditions favor the vector, while the maximum number of CL cases occurs during the following wet season. This has a clear relation to the El Niño/La Niña Southern Oscillation (ENSO) and the results presented here show that uncharacteristic dry conditions in the MMR follow El Niño after a lag period of 3 months, while wet conditions follow La Niña, again after a lag period of 3 months. El Niño brings dry conditions with warming of the land surface leading to increased growth of trees and bushes as indicated by rising NDVI values, eventually producing increased numbers of CL cases, with a peak of new cases occurring 4 to 5 months later. La Niña, on the other hand, produces wet and cool weather, which is less favorable for the leishmaniasis vector and therefore results in comparatively lower number of CL cases. Since these seasonal climate changes affect the dynamics of the CL vector, and thus the number of CL cases, a close watch of the ENSO phenomenon and the weather type it brings should be useful for monitoring and control of CL in the MMR.


Sign in / Sign up

Export Citation Format

Share Document