Distribution and size of ganglion cells in the retinae of large Amazon rodents

1989 ◽  
Vol 2 (3) ◽  
pp. 221-235 ◽  
Author(s):  
L. C. L. Silveira ◽  
C. W. Picanço-Diniz ◽  
E. Oswaldo-Cruz

AbstractThe topographical distribution of density and soma size of the retinal ganglion cells were studied in three species of hystricomorph rodents. Flat-mounted retinae were stained by the Nissl method and the ganglion cells counted on a matrix covering the whole retinae. Soma size was determined for samples at different retinal regions. The agouti, a diurnal rodent, shows a well-developed visual streak, reaching a peak density of 6250 ganglion cells/mm2. The total number of ganglion cells ranged from 477, 427–548, 205 in eight retinae. The ganglion-cell-size histogram of the visual streak region exhibits a marked shift towards smaller values when compared to retinal periphery. Upper and lower regions differ in both cell density and cell size. The crepuscular capybara shows a less-developed visual streak with a peak ganglion cell density of 2250/mm2. The shift towards small-sized cells in the visual streak is less marked. Total ganglion cell population is 368,840. In the nocturnal paca, the upper half of the fundus oculi includes a tapetum lucidum. The retina of this species shows the least-developed visual streak of this group, with the lowest peak ganglion cell density reaching 925/mm2. The total ganglion cell number (230,804) is also smaller than in the two other species. Soma-size spectra of this species are characterized by the presence, in the lower hemi-retina, of very large perikarya comparable in size to the cat's alpha ganglion cells.

2016 ◽  
Vol 87 (1) ◽  
pp. 4-18 ◽  
Author(s):  
João Paulo Coimbra ◽  
Consolate Kaswera-Kyamakya ◽  
Emmanuel Gilissen ◽  
Paul R. Manger ◽  
Shaun P. Collin

The potto (Perodicticus potto) is an arboreal strepsirhine found in the rainforests of central Africa. In contrast to most primates, the potto shows slow-moving locomotion over the upper surface of branches, where it forages for exudates and crawling invertebrates with its head held very close to the substrate. Here, we asked whether the retina of the potto displays topographic specializations in neuronal density that correlate with its unusual lifestyle. Using stereology and retinal wholemounts, we measured the total number and topographic distribution of retinal ganglion cells (total and presumed parasol), as well as estimating the upper limits of the spatial resolution of the potto eye. We estimated ∼210,000 retinal ganglion cells, of which ∼7% (∼14,000) comprise presumed parasol ganglion cells. The topographic distribution of both total and parasol ganglion cells reveals a concentric centroperipheral organization with a nasoventral asymmetry. Combined with the upwardly shifted orbits of the potto, this nasoventral increase in parasol ganglion cell density enhances contrast sensitivity and motion detection skywards, which potentially assists with the detection of predators in the high canopy. The central area of the potto occurs ∼2.5 mm temporal to the optic disc and contains a maximum ganglion cell density of ∼4,300 cells/mm2. We found no anatomical evidence of a fovea within this region. Using maximum ganglion cell density and eye size (∼14 mm), we estimated upper limits of spatial resolving power between 4.1 and 4.4 cycles/degree. Despite their reported reliance on olfaction to detect exudates, this level of spatial resolution potentially assists pottos with foraging for small invertebrates and in the detection of predators.


1996 ◽  
Vol 13 (4) ◽  
pp. 773-786 ◽  
Author(s):  
T. Fitzgibbon ◽  
R. J. Wingate ◽  
I. D. Thompson

AbstractUsing a combination of retrograde horseradish peroxidase (HRP) labelling, silver staining, and electron microscopy, we have assessed the relationship between retinal ganglion cell soma size and axon diameter in the adult ferret (Mustela putorius furo). Retinal ganglion cells were labelled following injections of HRP into the lateral geniculate nucleus (LGN), superior colliculus (SC), or LGN+SC. The soma size distributions following LGN, SC, or LGN+SC injections were all unimodal showing considerable overlap between different cell classes. This was confirmed for alpha cells, identified on the basis of dendritic filling or from neurofibrillar-stained retinae. Analysis of the soma size and axon diameters of a population of heavily labelled retinal ganglion cells showed a significant correlation between the two. However, the overall distribution of intraretinal axon diameter was bimodal with an extended tail. Analysis of the ganglion cell distributions in the adult ferret indicates that beta cells comprise about 50.5–55%, gamma 42.5–47%, and alpha 2.5% of the ganglion cell population. This implies that the proportion of gamma, beta, alpha cells in both cat and ferret retina is highly conserved despite differences in visual specialization in the two species.


2008 ◽  
Vol 25 (2) ◽  
pp. 215-220 ◽  
Author(s):  
JOHN D. PETTIGREW ◽  
PAUL R. MANGER

AbstractA single right retina from a black rhinoceros was whole mounted, stained and analyzed to determine the visual resolution of the rhinoceros, an animal with reputedly poor eyesight. A range of small (15-μm diameter) to large (100-μm diameter) ganglion cell types was seen across the retina. We observed two regions of high density of retinal ganglion cells at either end of a long, but thin, horizontal streak. The temporal specialization, which receives light from the anterior visual field, exhibited a ganglion cell density of approximately 2000/mm2, while the nasal specialization exhibited a density of approximately 1500/mm2. The retina exhibited a ganglion cell density bias toward the upper half, especially so, the upper temporal quadrant, indicating that the rhinoceros would be processing visual information from the visual field below the anterior horizon for the most part. Our calculations indicate that the rhinoceros has a visual resolution of 6 cycles/degree. While this resolution is one-tenth that of humans (60 cycles/deg) and less than that of the domestic cat (9 cycles/deg), it is comparable to that of the rabbit (6 cycles/deg), and exceeds that seen in a variety of other mammals including seals, dolphins, microbats, and rats. Thus, the reputation of the rhinoceros as a myopic, weakly visual animal is not supported by our observations of the retina. We calculate that the black rhinoceros could readily distinguish a 30 cm wide human at a distance of around 200 m given the appropriate visual background.


Development ◽  
2001 ◽  
Vol 128 (1) ◽  
pp. 117-124 ◽  
Author(s):  
M. Gonzalez-Hoyuela ◽  
J.A. Barbas ◽  
A. Rodriguez-Tebar

The development of the nervous system is dependent on a complex set of signals whose precise co-ordination ensures that the correct number of neurones are generated. This regulation is achieved through a variety of cues that influence both the generation and the maintenance of neurones during development. We show that in the chick embryo, stratified retinal ganglion cells (RGCs) are themselves responsible for providing the signals that control the number of RGCs that are generated, both by inhibiting the generation of new ganglion cells and by killing incoming migratory ganglion cells. Selective toxicological ablation of RGCs in the chick embryo resulted in the achronic generation of ganglion cells, which eventually led to the repopulation of the ganglion cell layer and a large decrease in the physiological cell death affecting postmitotic migratory neurones. Interestingly, the application of exogenous NGF reversed the effects of ganglion cell ablation on ganglion cell death. Because the only source of NGF in the retina is that produced by the stratified ganglion cells, we infer that these differentiated neurones regulate their own cell number by secreting NGF, a neurotrophin that has previously been shown to be responsible for the death of migrating ganglion cells.


2011 ◽  
Vol 105 (6) ◽  
pp. 2687-2697 ◽  
Author(s):  
Leanne L. H. Chan ◽  
Eun-Jin Lee ◽  
Mark S. Humayun ◽  
James D. Weiland

Electrical stimulation threshold and retinal ganglion cell density were measured in a rat model of retinal degeneration. We performed in vivo electrophysiology and morphometric analysis on normal and S334ter line 3 (RD) rats (ages 84–782 days). We stimulated the retina in anesthetized animals and recorded evoked responses in the superior colliculus. Current pulses were delivered with a platinum-iridium (Pt-Ir) electrode of 75-μm diameter positioned on the epiretinal surface. In the same animals used for electrophysiology, SMI-32 immunolabeling of the retina enabled ganglion cell counting. An increase in threshold currents positively correlated with age of RD rats. SMI-32-labeled retinal ganglion cell density negatively correlated with age of RD rats. ANOVA shows that RD postnatal day (P)100 and P300 rats have threshold and density similar to normal rats, but RD P500 and P700 rats have threshold and density statistically different from normal rats ( P < 0.05). Threshold charge densities were within the safety limits of Pt for all groups and pulse configurations, except at RD P600 and RD P700, where pulses were only safe up to 1- and 0.2-ms duration, respectively. Preservation of ganglion cells may enhance the efficiency and safety of electronic retinal implants.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


2014 ◽  
Vol 55 (10) ◽  
pp. 6505 ◽  
Author(s):  
Gustavo C. Munguba ◽  
Sanja Galeb ◽  
Yuan Liu ◽  
David C. Landy ◽  
Daisy Lam ◽  
...  

Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 77-92
Author(s):  
S. C. Sharma ◽  
J. G. Hollyfield

The specification of central connexions of retinal ganglion cells was studied in Xenopus laevis. In one series of experiments, the right eye primordium was rotated 180° at embryonic stages 24–32. In the other series, the left eye was transplanted into the right orbit, and vice versa, with either 0° or 180° rotation. After metamorphosis the visual projections from the operated eye to the contralateral optic tectum were mapped electrophysiologically and compared with the normal retinotectal map. In all cases the visual projection map was rotated through the same angle as was indicated by the position of the choroidal fissure. The left eye exchanged into the right orbit retained its original axes and projected to the contralateral tectum. These results suggest that retinal ganglion cell connexions are specified before stage 24.


Sign in / Sign up

Export Citation Format

Share Document