The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects

2004 ◽  
Vol 21 (4) ◽  
pp. 567-586 ◽  
Author(s):  
CHARLES M. HIGGINS ◽  
JOHN K. DOUGLASS ◽  
NICHOLAS J. STRAUSFELD

Based on comparative anatomical studies and electrophysiological experiments, we have identified a conserved subset of neurons in the lamina, medulla, and lobula of dipterous insects that are involved in retinotopic visual motion direction selectivity. Working from the photoreceptors inward, this neuronal subset includes lamina amacrine (α) cells, lamina monopolar (L2) cells, the basket T-cell (T1 or β), the transmedullary cell Tm1, and the T5 bushy T-cell. Two GABA-immunoreactive neurons, the transmedullary cell Tm9 and a local interneuron at the level of T5 dendrites, are also implicated in the motion computation. We suggest that these neurons comprise the small-field elementary motion detector circuits the outputs of which are integrated by wide-field lobula plate tangential cells. We show that a computational model based on the available data about these neurons is consistent with existing models of biological elementary motion detection, and present a comparable version of the Hassenstein-Reichardt (HR) correlation model. Further, by using the model to synthesize a generic tangential cell, we show that it can account for the responses of lobula plate tangential cells to a wide range of transient stimuli, including responses which cannot be predicted using the HR model. This computational model of elementary motion detection is the first which derives specifically from the functional organization of a subset of retinotopic neurons supplying the lobula plate. A key prediction of this model is that elementary motion detector circuits respond quite differently to small-field transient stimulation than do spatially integrated motion processing neurons as observed in the lobula plate. In addition, this model suggests that the retinotopic motion information provided to wide-field motion-sensitive cells in the lobula is derived from a less refined stage of processing than motion inputs to the lobula plate.

Author(s):  
Steven D. Wiederman ◽  
David C. O’Carroll

Abstract Flying insects are valuable animal models for elucidating computational processes underlying visual motion detection. For example, optical flow analysis by wide-field motion processing neurons in the insect visual system has been investigated from both behavioral and physiological perspectives [1]. This has resulted in useful computational models with diverse applications [2,3]. In addition, some insects must also extract the movement of their prey or conspecifics from their environment. Such insects have the ability to detect and interact with small moving targets, even amidst a swarm of others [4,5]. We use electrophysiological techniques to record from small target motion detector (STMD) neurons in the insect brain that are likely to subserve these behaviors. Inspired by such recordings, we previously proposed an ‘elementary’ small target motion detector (ESTMD) model that accounts for the spatial and temporal tuning of such neurons and even their ability to discriminate targets against cluttered surrounds [6-8]. However, other properties such as direction selectivity [9] and response facilitation for objects moving on extended trajectories [10] are not accounted for by this model. We therefore propose here two model variants that cascade an ESTMD model with a traditional motion detection model algorithm, the Hassenstein Reichardt ‘elementary motion detector’ (EMD) [11]. We show that these elaborations maintain the principal attributes of ESTMDs (i.e. spatiotemporal tuning and background clutter rejection) while also capturing the direction selectivity observed in some STMD neurons. By encapsulating the properties of biological STMD neurons we aim to develop computational models that can simulate the remarkable capabilities of insects in target discrimination and pursuit for applications in robotics and artificial vision systems.


1996 ◽  
Vol 76 (3) ◽  
pp. 1786-1799 ◽  
Author(s):  
T. M. Brotz ◽  
A. Borst

1. To identify some of the neurotransmitters involved in the processing of visual motion information the pharmacology of transmitter receptors on motion-sensitive visual interneurons (VS and HS cells) was investigated in an in vitro preparation of the blowfly (Calliphora erythrocephala) brain. Cholinergic and GABAergic drugs were applied in the bath and iontophoretically while recording intracellularly from HS and VS cells. 2. Bath-applied carbachol (10 and 100 microM) leads to a depolarization in HS and VS cells. One micromolar nicotine also has a depolarizing effect. Both agonists are effective in 0 Ca2+/high Mg(2+)-saline, too, which isolates the cells synaptically. The muscarinic agonists pilocarpine and oxotremorine have no effects on the membrane potential. 3. Iontophoretic application of acetylcholine, carbachol, and nicotine depolarizes VS and HS cells. The iontophoretic carbachol response is antagonized by alpha-bungarotoxin (EC50 = 0.19 microM), mecamylamine (EC50 = 0.32 microM), d-tubocurarine (EC50 = 9.5 microM), and bicuculline but not by decamethonium and scopolamine. 4. Bath application of muscimol strongly hyperpolarizes VS cells in normal fly saline. The gamma-aminobutyric acid-C (GABAC)-receptor agonist cis-4-aminocrotonic acid (CACA) has no effects. The hyperpolarizing response to iontophoretic applied muscimol is present in 0 Ca2+/high Mg2+ saline as well as in Co(2+)-containing saline. The muscimol response is reduced in low chloride saline and thus chloride sensitive. The muscimol response is blocked by picrotoxinin (EC50 = 3.4 microM) but not by the GABAA receptor antagonist bicuculline. 5. Taken together the primary responses of the lobula plate tangential cells appear to be nicotinic cholinergic and GABAergic. 6. The pharmacology of natural synaptic input to VS cells was investigated by extracellular electrical stimulation of the medulla. Such evoked excitatory postsynaptic potentials (EPSPs) are blocked reversibly in 0 Ca2+/high Mg2+ saline. The nicotinic antagonists mecamylamine (1 microM) and d-tubocurarine (50-100 microM) abolish or diminish the EPSPs, respectively. 7. The pharmacological data are incorporated into a semicellular model of a visual motion detector favoring a role of lobula plate tangential cells in certain steps of visual motion processing. Cholinergic and GABAergic inputs are an ideal cellular implementation of a linear subtraction of the signals arising from local motion-sensitive elements with opposite preferred direction. Such a mechanism enhances direction-selectivity and, together with dendritic integration, increases the sensitivity of the tangential cells for wide-field motion.


2007 ◽  
Vol 98 (6) ◽  
pp. 3309-3320 ◽  
Author(s):  
Moshe N. Safran ◽  
Virginia L. Flanagin ◽  
Alexander Borst ◽  
Haim Sompolinsky

In this work, we studied the adaptation of H1, a motion-sensitive neuron in the fly visual system, to the variance of randomly fluctuating velocity stimuli. We ask two questions. 1) Which components of the motion detection system undergo genuine adaptational changes in response to the variance of the fluctuating velocity signal? 2) What are the consequences of this adaptation for the information processing capabilities of the neuron? To address these questions, we characterized the adaptation of H1 by estimating the changes in the parameters of an associated Reichardt motion detection model under various stimulus conditions. The strongest stimulus dependence was exhibited by the temporal kernel of the motion detector and was parametrized by changes in the model's high-pass time constant (τH). This time constant shortened considerably with increasing velocity fluctuations. We showed that this adaptive process contributes significantly to the shortening of the velocity response time-course but not to velocity gain control. To assess the contribution of time-constant adaptation to information transmission, we compared the information rates generated by our adaptive model motion detector with model simulations in which τH was held fixed at its unadapted value for all stimulus conditions. We found that for intermediate stimulus conditions, fixing τH at its unadapted value led to higher information rates, suggesting that time-constant adaptation does not optimize total information rates about velocity trajectories. We also found that, over the wide range of stimulus conditions tested here, H1 information rates are dependent on the amplitude of velocity fluctuations.


1999 ◽  
Vol 16 (6) ◽  
pp. 991-1000 ◽  
Author(s):  
MICHAEL R. IBBOTSON ◽  
COLIN W.G. CLIFFORD ◽  
RICHARD F. MARK

A nonlinear interaction between signals from at least two spatially displaced receptors is a fundamental requirement for a direction-selective motion detector. This paper characterizes the nonlinear mechanism present in the motion detector pathway that provides the input to wide-field directional neurons in the nucleus of the optic tract of the wallaby, Macropus eugenii. An apparent motion stimulus is used to reveal the interactions that occur between adjacent regions of the receptive fields of the neurons. The interaction between neighboring areas of the field is a nonlinear facilitation that is accurately predicted by the outputs of an array of correlation-based motion detectors (Reichardt detectors). Based on the similarity between the output properties of the detector array and the real neurons, it is proposed that the interaction between neighboring regions of the receptive field is a second-order nonlinearity such as a multiplication. The results presented here for wallaby neurons are compared to data collected from directional systems in other species.


2018 ◽  
Vol 120 (3) ◽  
pp. 1153-1161 ◽  
Author(s):  
Qiang Chen ◽  
Wei Wei

Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.


2020 ◽  
Author(s):  
Joseph M. Fabian ◽  
Basil el Jundi ◽  
Steven D. Wiederman ◽  
David C. O’Carroll

SummaryDragonflies represent an ancient lineage of visual predators, which last shared a common ancestor with insect groups such as dipteran flies in the early Devonian, 406 million years ago [1,2]. Despite their important evolutionary status, and recent interest in them as a model for complex visual physiology and behavior, the most recent detailed description of the dragonfly optic lobe is itself more than a century old [3]. Many insects process visual information in optic lobes comprising 4 sequential, retinotopically organized neuropils: the lamina, medulla, lobula and a posterior lobula plate devoted to processing information about wide-field motion stimuli [4, 5]. Recent reports suggest that the dragonflies also follow this basic plan, with a divided lobula similar to those of flies, moths and butterflies [6, 7]. Here we refute this claim, showing that dragonflies have an unprecedentedly complex lobula comprising at least 4 sequential synaptic neuropils, in addition to two lobula plate like structures located on opposite sides of the brain. The second and third optic ganglia contain approximately twice as many synaptic layers as any other insect group yet studied. Using intracellular recording and labeling of neurons we further show that the most anterior lobe contains wide-field motion processing tangential neurons similar to those of the posterior lobula plate of dipteran flies. In addition to describing what is probably the most complex and unique optic lobe of any insect to date, our findings provide interesting insights to understanding the evolution of the insect optic lobe and serve as a reminder that the highly studied visual circuits of dipteran flies represent just a single derived form of these brain structures.


2014 ◽  
Vol 369 (1636) ◽  
pp. 20130043 ◽  
Author(s):  
David C. O'Carroll ◽  
Steven D. Wiederman

Theories based on optimal sampling by the retina have been widely applied to visual ecology at the level of the optics of the eye, supported by visual behaviour. This leads to speculation about the additional processing that must lie in between—in the brain itself. But fewer studies have adopted a quantitative approach to evaluating the detectability of specific features in these neural pathways. We briefly review this approach with a focus on contrast sensitivity of two parallel pathways for motion processing in insects, one used for analysis of wide-field optic flow, the other for detection of small features. We further use a combination of optical modelling of image blur and physiological recording from both photoreceptors and higher-order small target motion detector neurons sensitive to small targets to show that such neurons operate right at the limits imposed by the optics of the eye and the noise level of single photoreceptors. Despite this, and the limitation of only being able to use information from adjacent receptors to detect target motion, they achieve a contrast sensitivity that rivals that of wide-field motion sensitive pathways in either insects or vertebrates—among the highest in absolute terms seen in any animal.


2020 ◽  
pp. 1-10
Author(s):  
Bryce J. Dietrich

Abstract Although previous scholars have used image data to answer important political science questions, less attention has been paid to video-based measures. In this study, I use motion detection to understand the extent to which members of Congress (MCs) literally cross the aisle, but motion detection can be used to study a wide range of political phenomena, like protests, political speeches, campaign events, or oral arguments. I find not only are Democrats and Republicans less willing to literally cross the aisle, but this behavior is also predictive of future party voting, even when previous party voting is included as a control. However, this is one of the many ways motion detection can be used by social scientists. In this way, the present study is not the end, but the beginning of an important new line of research in which video data is more actively used in social science research.


2021 ◽  
Vol 22 (10) ◽  
pp. 5394
Author(s):  
Tomas Lidak ◽  
Nikol Baloghova ◽  
Vladimir Korinek ◽  
Radislav Sedlacek ◽  
Jana Balounova ◽  
...  

Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an “ancient” RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.


2021 ◽  
Vol 9 (2) ◽  
pp. e001608
Author(s):  
Debottam Sinha ◽  
Sriganesh Srihari ◽  
Kirrliee Beckett ◽  
Laetitia Le Texier ◽  
Matthew Solomon ◽  
...  

BackgroundEpstein-Barr virus (EBV), an oncogenic human gammaherpesvirus, is associated with a wide range of human malignancies of epithelial and B-cell origin. Recent studies have demonstrated promising safety and clinical efficacy of allogeneic ‘off-the-shelf’ virus-specific T-cell therapies for post-transplant viral complications.MethodsTaking a clue from these studies, we developed a highly efficient EBV-specific T-cell expansion process using a replication-deficient AdE1-LMPpoly vector that specifically targets EBV-encoded nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2), expressed in latency II malignancies.ResultsThese allogeneic EBV-specific T cells efficiently recognized human leukocyte antigen (HLA)-matched EBNA1-expressing and/or LMP1 and LMP2-expressing malignant cells and demonstrated therapeutic potential in a number of in vivo models, including EBV lymphomas that emerged spontaneously in humanized mice following EBV infection. Interestingly, we were able to override resistance to T-cell therapy in vivo using a ‘restriction-switching’ approach, through sequential infusion of two different allogeneic T-cell therapies restricted through different HLA alleles. Furthermore, we have shown that inhibition of the programmed cell death protein-1/programmed death-ligand 1 axis in combination with EBV-specific T-cell therapy significantly improved overall survival of tumor-bearing mice when compared with monotherapy.ConclusionThese findings suggest that restriction switching by sequential infusion of allogeneic T-cell therapies that target EBV through distinct HLA alleles may improve clinical response.


Sign in / Sign up

Export Citation Format

Share Document