Plumbing the depths - the waters of the Ross Sea

2003 ◽  
Vol 15 (1) ◽  
pp. 1-1
Author(s):  
STANLEY S. JACOBS

The first oceanographic measurements in the Ross Sea were made by its discoverer James Clark Ross, from the Erebus, on 18 January 1841. Since that time its continental shelf, seasonally ice free in most years, has proved a magnet to explorers and scientists, if not to fishermen and tourists. Nevertheless, our knowledge of this environment is rapidly being outpaced by our ignorance of its variability. For example, the Ross Sea contains two of the largest, most persistent polynyas on the Antarctic coastline, but its sea ice extent has increased over recent decades while its salinity has steadily declined. Are regional winds now stronger, the ocean circulation faster, and the ice thinner now than at the time of the IGY? Are its winter polynyas characterized more by upwelling driven by offshore winds, or downwelling due to brine release when sea ice is formed? How are polynya surface layers stabilized and iron-enriched, reportedly enhancing summer productivity, if the ice cover is blown away before it can melt in situ?

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2021 ◽  
Author(s):  
Tristan Vadsaria ◽  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Takashi Obase ◽  
Wing-Le Chan ◽  
...  

<p>Southern Ocean sea ice and oceanic fronts are known to play an important role on the climate system, carbon cycles, bottom ocean circulation, and Antarctic ice sheet. However, many models of the previous Past-climate Model Intercomparison Project (PMIP) underestimated sea-ice extent (SIE) for the Last Glacial Maximum (LGM)(Roche et al., 2012; Marzocchi and Jensen, 2017), mainly because of surface bias (Flato et al., 2013) that may have an impact on mean ocean temperature (MOT). Indeed, recent studies further suggest an important link between Southern Ocean sea ice and mean ocean temperature (Ferrari et al., 2014; Bereiter et al., 2018 among others). Misrepresent the Antarctic sea-ice extent could highly impact deep ocean circulation, the heat transport and thus the MOT. In this study, we will stress the relationship between the distribution of Antarctic sea-ice extent and the MOT through the analysis of the PMIP3 and PMIP4 exercise and by using a set of MIROC models. To date, the latest version of MIROC improve its representation of the LGM Antarctic sea-ice extent, affecting the deep circulation and the MOT distribution (Sherriff-Tadano et al., under review).</p><p>Our results show that available PMIP4 models have an overall improvement in term of LGM sea-ice extent compared to PMIP3, associated to colder deep and bottom ocean temperature. Focusing on MIROC (4m) models, we show that models accounting for Southern Ocean sea-surface temperature (SST) bias correction reproduce an Antarctic sea-ice extent, 2D-distribution, and seasonal amplitude in good agreement with proxy-based data. Finally, using PMIP-MIROC analyze, we show that it exists a relationship between the maximum SIE and the MOT, modulated by the Antarctic intermediate and bottom waters.</p>


2017 ◽  
Vol 30 (6) ◽  
pp. 2251-2267 ◽  
Author(s):  
Josefino C. Comiso ◽  
Robert A. Gersten ◽  
Larry V. Stock ◽  
John Turner ◽  
Gay J. Perez ◽  
...  

Abstract The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 × 106 km2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of −0.94 during the growth season and −0.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at −0.96 during the growth season and −0.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.


2015 ◽  
Vol 28 (4) ◽  
pp. 1543-1560 ◽  
Author(s):  
William Richard Hobbs ◽  
Nathaniel L. Bindoff ◽  
Marilyn N. Raphael

Abstract Using optimal fingerprinting techniques, a detection analysis is performed to determine whether observed trends in Southern Ocean sea ice extent since 1979 are outside the expected range of natural variability. Consistent with previous studies, it is found that for the seasons of maximum sea ice cover (i.e., winter and early spring), the observed trends are not outside the range of natural variability and in some West Antarctic sectors they may be partially due to tropical variability. However, when information about the spatial pattern of trends is included in the analysis, the summer and autumn trends fall outside the range of internal variability. The detectable signal is dominated by strong and opposing trends in the Ross Sea and the Amundsen–Bellingshausen Sea regions. In contrast to the observed pattern, an ensemble of 20 CMIP5 coupled climate models shows that a decrease in Ross Sea ice cover would be expected in response to external forcings. The simulated decreases in the Ross, Bellingshausen, and Amundsen Seas for the autumn season are significantly different from unforced internal variability at the 95% confidence level. Unlike earlier work, the authors formally show that the simulated sea ice response to external forcing is different from both the observed trends and simulated internal variability and conclude that in general the CMIP5 models do not adequately represent the forced response of the Antarctic climate system.


2014 ◽  
Vol 8 (4) ◽  
pp. 1289-1296 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one-third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that much of the increase in the reported trend occurred due to the previously undocumented effect of a change in the way the satellite sea ice observations are processed for the widely used Bootstrap algorithm data set, rather than a physical increase in the rate of ice advance. Specifically, we find that a change in the intercalibration across a 1991 sensor transition when the data set was reprocessed in 2007 caused a substantial change in the long-term trend. Although our analysis does not definitively identify whether this change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current data set or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the data set. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that much of this expansion may be a spurious artifact of an error in the processing of the satellite observations.


2021 ◽  
Author(s):  
Alessandro Silvano ◽  
Annie Foppert ◽  
Steve Rintoul ◽  
Paul Holland ◽  
Takeshi Tamura ◽  
...  

<div> <div> <div> <p>Antarctic Bottom Water (AABW) supplies the lower limb of the global overturning circulation, ventilates the abyssal ocean and sequesters heat and carbon on multidecadal to millennial timescales. AABW originates on the Antarctic continental shelf, where strong winter cooling and brine released during sea ice formation produce Dense Shelf Water, which sinks to the deep ocean. The salinity, density and volume of AABW have decreased over the last 50 years, with the most marked changes observed in the Ross Sea. These changes have been attributed to increased melting of the Antarctic Ice Sheet. Here we use in situ observations to document a recovery in the salinity, density and thickness (that is, depth range) of AABW formed in the Ross Sea, with properties in 2018–2019 similar to those observed in the 1990s. The recovery was caused by increased sea ice formation on the continental shelf. Increased sea ice formation was triggered by anomalous wind forcing associated with the unusual combination of positive Southern Annular Mode and extreme El Niño conditions between 2015 and 2018. Our study highlights the sensitivity of AABW formation to remote forcing and shows that climate anomalies can drive episodic increases in local sea ice formation that counter the tendency for increased ice-sheet melt to reduce AABW formation.</p> </div> </div> </div>


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Naiming Yuan ◽  
Minghu Ding ◽  
Josef Ludescher ◽  
Armin Bunde

2014 ◽  
Vol 8 (1) ◽  
pp. 273-288 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that the increase in the reported trend occurred primarily due to the effect of a previously undocumented change in the way the satellite sea ice observations are processed for the widely-used Bootstrap algorithm dataset, rather than a physical increase in the rate of ice advance. Although our analysis does not definitively identify whether this undocumented change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current dataset or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the dataset. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that this expansion may be a spurious artifact of an error in the satellite observations, and that the actual Antarctic sea ice cover may not be expanding at all.


Author(s):  
Tom Rippeth ◽  
Vasyl Vlasenko ◽  
Nataliya Stashchuk ◽  
Igor E. Kozlov ◽  
Brian Scannell ◽  
...  

Abstract Receding seasonal sea ice extent over the Arctic Ocean is increasing access to what was a largely inaccessible region. At lower latitudes the complex vertical current structure associated with large amplitude, high frequency non-linear internal waves, sometimes referred to as solitons, present a significant challenge to the safe engineering design and operation of offshore infrastructure. In this paper we examine the prevalence this type of internal wave in the Arctic Ocean. To do so we will draw on both in situ and remotely sensed oceanographic data. This will be combined with state-of-the-art numerical modelling to demonstrate a link between the geographical occurrence of these waves and the tide. Whilst the link implies that these features are geographically limited, it is also likely that the geographical limits will change with declining sea ice cover. These results will then be used to provide a road map towards a methodology for forecasting the prevalence of these phenomena in a future Arctic Ocean.


2021 ◽  
Author(s):  
Laura De Santis ◽  
Denise Kulhanek ◽  
Robert McKay

<p>The five sites drilled during International Ocean Discovery Program (IODP) Expedition 374 recovered the distal geological component of a Neogene latitudinal and depth transect across the Ross Sea continental shelf, slope and rise, that can be combined with previous records of ANDRILL and the Deep Sea Drilling Project Leg 28. This transect provides clues into the ocean and atmospheric forcings on marine ice sheet instabilities and provides new direct constraints for reconstructing the Antarctic Ice Sheet contribution to global sea level change. Site U1521 recovered a middle Miocene record that allows identification of the different processes that lead to the expansion and retreat of ice streams emanating from the East and West Antarctic Ice Sheets across the Ross Sea continental shelf. This site also recovered a semi-continuous, expanded, high-resolution record of the Miocene Climatic Optimum in an ice-proximal location. Site U1522 recovered a Pleistocene to upper Miocene sequence from the outer shelf, dating the step-wise continental shelf–wide expansion and coalescing of marine-based ice streams from West Antarctica. Thin diatom-rich mudstone and diatomite beds were recovered in some intervals that provide snapshot records of a deglaciated outer shelf environment in the late Miocene. Site U1523 targeted a Miocene to Pleistocene sediment drift on the outermost continental shelf and informs about the changing vigor of the eastward flowing Antarctic Slope Current (ASC) through time. Changes in ASC vigor is a key control on regulating heat flux onto the continental shelf, making the ASC a key control on ice sheet mass balance. Sites U1524 and U1525 cored a continental rise levee system near the flank of the Hillary Canyon. The upper ~50 m at Site U1525 belong to a large trough-mouth fan deposited to the west of the site. The lower 100 m at Site U1525 and the entire 400 m succession of sediment at Site U1524 recovered near-continuous records of the downslope flow of Ross Sea Bottom Water and turbidity currents, but also of ASC vigor and iceberg discharge. Analyses of Exp. 374 sediments is ongoing, but following initial shipboard characterization, the intial results of sample analysis, the correlation between downhole synthetic logs and the associated seismic sections provide insight into the ages and the processes of erosion and deposition of glacial and marine strata. Exp. 374 sediments are providing key chronological constraints on the major Ross Sea seismic unconformities, enabling reconstruction of paleo-bathymetry and assessment of the geomorphological changes associated with Neogene ice sheet and ocean circulation changes. Exp. 374 results are fundamental for improving the boundary conditions of numerical ice sheet, ocean, and coupled climate models, which are critically required for understanding past ice sheet and global sea level response during warm climate intervals. Such data will enable more accurate predictions of ice sheet behavior and sea level rise anticipated with future warming. </p>


Sign in / Sign up

Export Citation Format

Share Document