Glaciological characteristics of Institute Ice Stream using remote sensing

2004 ◽  
Vol 16 (2) ◽  
pp. 205-213 ◽  
Author(s):  
TED SCAMBOS ◽  
JENNIFER BOHLANDER ◽  
BRUCE RAUP ◽  
TERRY HARAN

We assess the ice flow of Institute Ice Stream (IIS; 81.5°S, 75°W) and the adjacent Ronne Ice Shelf using satellite images and geophysical parameters from recent continent-wide compilations. Landsat image pairs from the 1980s and 1990s are used to determine ice velocity. Peak speed is 398 ± 10 m a−1. Several mappings using images spanning an eleven-year period indicate this speed and the pattern of ice flow throughout the mapped portion of the stream is constant to within ± 20 m a−1. Combining catchment extent (141 700 km2) with surface accumulation, mass input to IIS is 25.1 ± 2 Gt a−1. Mean ice thickness across the grounding line is 1177 m. Mass flux to the Ronne Ice Shelf, determined from these values and our velocity profile, is 22.7 ± 2 Gt a−1. Topographic mapping using photoclinometry, coupled with ice thickness and ice velocity, permits an assessment of driving force versus flow speed. This indicates wide variations in basal resistance. Despite evidence of present-day near-balance and constant speed in the ice stream trunk, a recent change in outflow is implied by folding of shelf streaklines near Korff Ice Rise. This may be a result of changing shelf thickness or erosion of Doake Ice Rumples.

2021 ◽  
Author(s):  
Jan De Rydt ◽  
Ronja Reese ◽  
Fernando Paolo ◽  
G Hilmar Gudmundsson

<p>Pine Island Glacier in West Antarctica is among the fastest changing glaciers worldwide. Much of its fast-flowing central trunk is thinning and accelerating, a process thought to have been triggered by ocean-induced changes in ice-shelf buttressing. The measured acceleration in response to perturbations in ice thickness is a non-trivial manifestation of several poorly-understood physical processes, including the transmission of stresses between the ice and underlying bed. To enable robust projections of future ice flow, it is imperative that numerical models include an accurate representation of these processes. Here we combine the latest data with analytical and numerical solutions of SSA ice flow to show that the recent increase in flow speed of Pine Island Glacier is only compatible with observed patterns of thinning if a spatially distributed, predominantly plastic bed underlies large parts of the central glacier and its upstream tributaries.</p>


2013 ◽  
Vol 54 (63) ◽  
pp. 333-342 ◽  
Author(s):  
Benjamin M. Wagman ◽  
Ginny A. Catania

AbstractWe use a physical model to investigate how changes in subglacial hydrology affect ice motion of Antarctic ice streams. Ice streams are modelled using silicone polymer placed over a thin water layer to mimic ice flow dominated by basal sliding. The model ice-stream force balance is calculated and compared directly to the observed force balance of Whillans Ice Stream (WIS). Dynamic similarity between the model and WIS is achieved when their force balances are equivalent. The WIS force balance has evolved over time owing to increased basal resistance. We test two hypotheses: (1) the subglacial water distribution influences the ice-flow speed and thus the force balance; (2) shear margins are locations where transitions in water layer thickness occur. We find that the velocity and force balance are sensitive to pulsed water discharge events and changes in lubrication that result in sticky spots, and that model shear margins tend to overlie water lubrication boundaries. We conclude that local changes in basal lubrication near margins (possibly as a result of the presence of sticky spots or subglacial lakes) influence the stability of ice-stream margin position and may be responsible for large and rapid shifts in margin location.


2015 ◽  
Vol 61 (230) ◽  
pp. 1194-1206 ◽  
Author(s):  
Martin G. Wearing ◽  
Richard C.A. Hindmarsh ◽  
M. Grae Worster

AbstractWe investigate the relationship between four ice-shelf characteristics in the area close to the calving front: ice flow speed, strain rate, ice thickness and shelf width. Data are compiled for these glaciological parameters at the calving fronts of 22 Antarctic ice shelves. Clarification concerning the viscous supply of ice to the calving front is sought following the empirical calving law of Alley and others (2008), derived from a similar but smaller dataset, and the scaling analysis of Hindmarsh (2012). The dataset is analysed and good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of ice shelves that are laterally confined and have uniform rheology. The lateral confinement ensures flow is aligned in the along-shelf direction, and uniform rheological parameters mean resistance to flow is provided by near-stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute to marginal weakening or the presence of ice tongues.


2007 ◽  
Vol 53 (183) ◽  
pp. 659-664 ◽  
Author(s):  
Angelika Humbert

A diagnostic, dynamic/thermodynamic ice-shelf model is applied to the George VI Ice Shelf, situated in the Bellinghausen Sea, Antarctica. The George VI Ice Shelf has a peculiar flow geometry which sets it apart from other ice shelves. Inflow occurs along the two longest, and almost parallel, sides, whereas outflow occurs on the two ice fronts that are relatively short and situated at opposite ends of the ice shelf. Two data sources were used to derive the ice thickness distribution: conventional radioecho sounding from the British Antarctic Survey was combined with thickness inferred from surface elevation obtained by the NASA GLAS satellite system assuming hydrostatic equilibrium. We simulate the present ice flow over the ice shelf that results from the ice thickness distribution, the inflow at the grounding line and the flow rate factor. The high spatial resolution of the ice thickness distribution leads to very detailed simulations. The flow field has some extraordinary elements (e.g. the stagnation point characteristics resulting from the unusual ice-shelf geometry).


2000 ◽  
Vol 31 ◽  
pp. 184-190 ◽  
Author(s):  
Christina L. Hulbe ◽  
Ian R. Joughin ◽  
David L. Morse ◽  
Robert A. Bindschadler

AbstractA network of relatively fast-flowing tributaries in the catchment basins of the West Antarctic ice streams transport ice from the inland reservoir to the heads of the ice streams. Branches of the network follow valleys in basal topography but not all valleys contain tributaries. We investigate the circumstances favoring tributary flow upstream of Ice Streams D and E, using a combination of observation and numerical modelling. No consistent pattern emerges. The transition from tributary to ice-stream flow occurs smoothly along the main tributary feeding into the onset of Ice Stream D, with ice thickness being relatively more important upstream, and sliding being relatively more important downstream. Elsewhere, the downstream pattern of flow is more complicated, with local increases and decreases in the contribution of sliding to ice speed. Those changes may be due to variations in basal water storage, subglacial geologic properties or a combination of the two.


2015 ◽  
Vol 785 ◽  
pp. 109-134 ◽  
Author(s):  
M. C. Dallaston ◽  
I. J. Hewitt ◽  
A. J. Wells

We study a simplified model of ice–ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.


2003 ◽  
Vol 30 (7) ◽  
Author(s):  
S. Anandakrishnan ◽  
D. E. Voigt ◽  
R. B. Alley ◽  
M. A. King

2017 ◽  
Vol 63 (242) ◽  
pp. 959-972
Author(s):  
METTE K. GILLESPIE ◽  
WENDY LAWSON ◽  
WOLFGANG RACK ◽  
BRIAN ANDERSON ◽  
DONALD D. BLANKENSHIP ◽  
...  

ABSTRACTThe Darwin–Hatherton Glacial system (DHGS) connects the East Antarctic Ice Sheet (EAIS) with the Ross Ice Shelf and is a key area for understanding past variations in ice thickness of surrounding ice masses. Here we present the first detailed measurements of ice thickness and grounding zone characteristics of the DHGS as well as new measurements of ice velocity. The results illustrate the changes that occur in glacier geometry and ice flux as ice flows from the polar plateau and into the Ross Ice Shelf. The ice discharge and the mean basal ice shelf melt for the first 8.5 km downstream of the grounding line amount to 0.24 ± 0.05 km3 a−1 and 0.3 ± 0.1 m a−1, respectively. As the ice begins to float, ice thickness decreases rapidly and basal terraces develop. Constructed maps of glacier geometry suggest that ice drainage from the EAIS into the Darwin Glacier occurs primarily through a deep subglacial canyon. By contrast, ice thins to <200 m at the head of the much slower flowing Hatherton Glacier. The glaciological field study establishes an improved basis for the interpretation of glacial drift sheets at the link between the EAIS and the Ross Ice Sheet.


2013 ◽  
Vol 54 (63) ◽  
pp. 18-24 ◽  
Author(s):  
Daniel Farinotti ◽  
Hugh Corr ◽  
G.Hilmar Gudmundsson

AbstractAn interpolated bedrock topography is presented for Flask Glacier, one of the tributaries of the remnant part of the Larsen B ice shelf, Antarctic Peninsula. The ice thickness distribution is derived by combining direct but sparse measurements from airborne radio-echo soundings with indirect estimates obtained from ice-flow modelling. The ice-flow model is applied to a series of transverse profiles, and a first estimate of the bedrock is iteratively adjusted until agreement between modelled and measured surface velocities is achieved. The adjusted bedrock is then used to reinterpret the radio-echo soundings, and the recovered information used to further improve the estimate of the bedrock itself. The ice flux along the glacier center line provides an additional and independent constraint on the ice thickness. The resulting bedrock topography reveals a glacier bed situated mainly below sea level with sections having retrograde slope. The total ice volume of 120 ±15 km3 for the considered area of 215 km2 corresponds to an average ice thickness of 560 ± 70 m.


Sign in / Sign up

Export Citation Format

Share Document