Exploring the conformations of nucleic acids

1995 ◽  
Vol 5 (3) ◽  
pp. 443-460 ◽  
Author(s):  
Marcel Turcotte ◽  
Guy Lapalme ◽  
François Major

AbstractThis paper presents an application of functional programming in the field of molecular biology: exploring the conformations of nucleic acids. TheNucleic Acid three-dimensional structure determination problem(NA3D) and a constraint satisfaction algorithm are formally described. Prototyping and experimental development using the Miranda functional programming language, over the last four years, are discussed. A Prolog implementation has been developed to evaluate software engineering and performance criteria between functional and logic programming. A C++ implementation has been developed for distribution purpose and to solve large practical problems. This system, called MC-SYM for ‘Macromolecular Conformation by SYMbolic generation’, is used in more than 50 laboratories, including academic and government research centres and pharmaceutical companies.

Todd has made highly significant contributions to the chemistry of natural products, in particular in relation to compounds which play important roles in biological systems. His researches on vitamins B 1 , E and B 12 were most elegant and have had far-reaching implications, but none more so than his structural and synthetic studies in the nucleic acid field. Here he developed methods for the synthesis of the nucleosides and for their phosphorylation; his work on the way they are combined made possible the subsequent determination of the three-dimensional structure of the nucleic acids thereby providing the basis for much of the exciting activity in the nucleotide field today. Todd’s achievements arise out of a rare combination of theoretical knowledge and outstanding experimental skill, with the most judicious exploitation of modern techniques. His work and his quality as an investigator have been widely recognized by biologists as well as by organic chemists.


The Copley Medal is awarded to Lord Todd, F. R. S. Todd has made highly significant contributions to the chemistry of natural products, in particular in relation to compounds which play important roles in biological systems. His researches on vitamins B 1 , E and B 12 were most elegant and have had far-reaching implications, but none more so than his structural and synthetic studies in the nucleic acid field. Here he developed methods for the synthesis of the nucleosides and for their phosphorylation; his work on the way they are combined made possible the subsequent determination of the three-dimensional structure of the nucleic acids thereby providing the basis for much of the exciting activity in the nucleotide field today. Todd’s achievements arise out of a rare combination of theoretical knowledge and outstanding experimental skill, with the most judicious exploitation of modern techniques. His work and his quality as an investigator have been widely recognized by biologists as well as by organic chemists.


2018 ◽  
Vol 28 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Robert A. Jacobs ◽  
Christopher J. Bates

Although deep neural networks (DNNs) are state-of-the-art artificial intelligence systems, it is unclear what insights, if any, they provide about human intelligence. We address this issue in the domain of visual perception. After briefly describing DNNs, we provide an overview of recent results comparing human visual representations and performance with those of DNNs. In many cases, DNNs acquire visual representations and processing strategies that are very different from those used by people. We conjecture that there are at least two factors preventing them from serving as better psychological models. First, DNNs are currently trained with impoverished data, such as data lacking important visual cues to three-dimensional structure, data lacking multisensory statistical regularities, and data in which stimuli are unconnected to an observer’s actions and goals. Second, DNNs typically lack adaptations to capacity limits, such as attentional mechanisms, visual working memory, and compressed mental representations biased toward preserving task-relevant abstractions.


Assessment ◽  
2020 ◽  
pp. 107319112095805
Author(s):  
Gregory D. Webster ◽  
Jennifer L. Howell ◽  
James A. Shepperd

With 20 items, the State Self-Esteem Scale (SSES) can be cumbersome in settings that demand efficiency. The present research created an efficient six-item version of the SSES that preserves score reliability and validity and its three-dimensional structure: social, appearance, and performance self-esteem. Item response theory and confirmatory factor analyses identified the “best” six items—two from each dimension (Study 1). Participants completed the SSES four times at 2-week intervals (Studies 2 and 3). The six-item SSES’ scores showed adequate test–retest reliability, explained substantial variance in trait-relevant measures, and showed convergent validity with related self-esteem measures. Participants completed the SSES and a laboratory experiment where they received negative feedback on an essay they had written and could retaliate against their evaluator by allocating hot sauce for them to consume (Study 4). The six-item SSES interacted with self-esteem instability in expected ways to predict hot sauce allocated.


2020 ◽  
Author(s):  
Gregory D. Webster ◽  
Jennifer Lee Howell ◽  
James A Shepperd

With 20 items, the State Self-Esteem Scale (SSES; Heatherton & Polivy, 1991) can be cumbersome in settings that demand efficiency. The present research created an efficient six-item version of the SSES that preserves score reliability and validity and its three-dimensional structure: social, appearance, and performance self-esteem. Item response theory and confirmatory factor analyses identified the “best” six items—two from each dimension (Study 1). Participants completed the SSES four times at two-week intervals (Studies 2 & 3). The six-item SSES’ scores showed adequate test–retest reliability, explained substantial variance in trait-relevant measures, and showed convergent validity with related self-esteem measures. Participants completed the SSES and a laboratory experiment where they received negative feedback on an essay they had written and could retaliate against their evaluator by allocating hot sauce for them to consume (Study 4). The six-item SSES interacted with self-esteem instability in expected ways to predict hot sauce allocated.


Acta Naturae ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 108-114 ◽  
Author(s):  
E. V. Dubrovin ◽  
G. V. Presnova ◽  
M. Yu. Rubtsova ◽  
A. M. Egorov ◽  
V. G Grigorenko ◽  
...  

Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.


Author(s):  
Richard C. Becker ◽  
Frederick A. Spencer

While all anticoagulants have, to a certain extent, novel properties, the development of agents that inhibit specific coagulation proteases through structural affinity and can be inhibited themselves by the concomitant production of antidotes (drug–antidote pair construct) has the potential to revolutionize the field. With the evolution of our thinking toward hemostasis and thrombosis has come new pharmacologic constructs for safe and effective treatment. Aptamers are single-stranded nucleic acids that inhibit a protein’s function by folding into a specific three-dimensional structure that defines high-affinity binding to the target protein (White et al., 2000). The term aptamer (from the Latin aptus, “to fit”) was coined by Ellington and Szostak (1990) following their pioneering work published originally in Nature. Based on iterative selection techniques, aptamers that bind essentially any protein or small molecule can be generated. A high-affinity, specific inhibitor that interacts with functional groups (on both the nucleic acid and the protein) can be constructed if a small amount of pure target is available. The initiation point for aptamer development is a combinatorial library composed of single-stranded nucleic acids (RNA, DNA, or modified RNA), typically containing 20 to 40 randomized positions (1024 different sequences). Isolation of high-affinity nucleic acid ligands involves a process known as SELEX (systemic evolution of ligands by exponential enrichment). The starting library is incubated with the protein of interest. Nucleic acid molecules that adopt conformations that allow target protein binding are subsequently partitioned from other sequences (that do not bind the protein). The bound sequences are removed and amplified by reverse transcription and polymerase chain reaction (PCR) (for RNA-based libraries) or PCR alone (for DNA-based libraries). After repeating the process several times, the selected ligands are secured and evaluated for binding affinity and ability to inhibit activity (of the target protein). Postselection optimization steps typically include (1) reduction in aptamer length (from a starting molecule of 80–100 nucleotides to 40 nucleotides); (2) enhanced stability in biologic systems (achieved by substitution of ribonucleotides with 2-amino, 2´-fluoro, or 2´-0-alkyl nucleotides and protection from exonuclease digestion by 3´ end capping); and (3) reduced renal clearance (achieved by increasing the molecules’ mo lecular weight through site-specific addition of polyethylene glycol moieties or other hydrophobic groups.


Author(s):  
John Maynard Smith ◽  
Eors Szathmary

The most fundamental distinction in biology is between nucleic acids, with their role as carriers of information, and proteins, which generate the phenotype. In existing organisms, nucleic acids and proteins mutually presume one another. The former, owing to their template activity, store the heritable information: the latter, by enzymatic activity, read and express this information. It seems that neither can function without the other. Which came first, nucleic acids or proteins? There are three possible answers: (1) nucleic acids; (2) proteins; (3) neither: they coevolved. In this chapter, we discuss various possible answers to this 'chicken or egg?' problem. In section 5.2, we discuss what seems to us the most likely answer, that at first RNA performed both functions, as replicator and enzyme. In section 5.3, we consider an alternative view, in which protein enzymes existed either before, or alongside, the first nucleic acids. In section 5.4, we ask whether, perhaps, the first replicators were not nucleic acids. Finally, in section 5.5, we ask why, given that the genetic message is carried by nucleic acids, there are only four nucleotides and two base pairs. So far, we have tacitly assumed nucleic acids preceeded proteins, without stating the main reason. Nucleic acids came first because they can perform both functions: they are replicable, and they can have enzymatic activity. For many years, a common opinion was that to be replicable almost amounted to self-replicative ability, but that it was far-fetched to assume enzymatic activity. Today, there is increasing evidence that RNA can act as an enzyme, but we are more aware of the difficulty of self-replication. It should have been expected on theoretical grounds that RNA could act as an enzyme: the possibility was discussed by Woese (1967), Crick (1968) and Orgel (1968). Consider first why proteins can act as enzymes. An enzyme has a well-determined three-dimensional structure of chemical groups that, in most cases, arises automatically from the primary structure. Substrates of the enzyme are bound by the chemical groups on the surface. This means that the reactants will be kept in close proximity, and hence experience a much higher local concentration of each other than in solution. This by itself increases the rate of the reaction.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Sign in / Sign up

Export Citation Format

Share Document