Differences in the dietary habits of Verreaux’s Eagles Aquila verreauxii between peri-urban and rural populations

2020 ◽  
pp. 1-15
Author(s):  
KAILEN PADAYACHEE ◽  
GERARD MALAN ◽  
NICO LÜBCKER ◽  
STEPHAN WOODBORNE ◽  
GRANT HALL

Summary Differences in the diets of urban and rural avian predators could indicate potential niche vulnerability in a particular habitat. This study compares the core-isotopic niche areas and diet disparity of a declining peri-urban Verreaux’s Eagle Aquila verreauxii population with a stable rural population in South Africa. In addition to stable isotope analyses, the diet of the peri-urban Verreaux’s Eagles was investigated using camera trap footage of prey delivered during the nesting season. Dominant prey consisted of species with a mixed diet of plants with a C3 and/or C4 photosynthetic pathway (browsers and grazers). Rock hyrax Procavia capensis contributed 60% of the total diet composition, scrub hare Lepus saxatilis 26% and Helmeted Guineafowl Numida meleagris 22%. The core-isotopic niche area for each population was calculated using bulk carbon (δ13C) and nitrogen (δ15N) stable isotope values chronological measured along the length of 18 feathers from 21 nests. The isotopic niche of the rural eagle population revealed that they consume prey from multiple trophic levels with a C3-plant-dominated prey base (browsers), likely including small carnivores. In contrast the isotopic niche of the peri-urban Verreaux’s Eagles correlated with the mixed mammalian and avian food-niche determined from camera trapping, confirming that the peri-urban population mainly hunted three abundant species that are all narrowly associated with modified human habitats. The decline in the Magaliesberg Verreaux’s Eagle population is, therefore, unlikely to be due to constraints in their dietary niche, as raptors benefit from the diversity and abundance of human-commensal prey associated with the peri-urban habitats.

2018 ◽  
Vol 5 (12) ◽  
pp. 180849 ◽  
Author(s):  
Ara Monadjem ◽  
Adam Kane ◽  
Peter Taylor ◽  
Leigh R. Richards ◽  
Grant Hall ◽  
...  

Bats play important ecological roles in tropical systems, yet how these communities are structured is still poorly understood. Our study explores the structure of African bat communities using morphological characters to define the morphospace occupied by these bats and stable isotope analysis to define their dietary niche breadth. We compared two communities, one in rainforest (Liberia) and one in savannah (South Africa), and asked whether the greater richness in the rainforest was due to more species ‘packing’ into the same morphospace and trophic space than bats from the savannah, or some other arrangement. In the rainforest, bats occupied a larger area in morphospace and species packing was higher than in the savannah; although this difference disappeared when comparing insectivorous bats only. There were also differences in morphospace occupied by different foraging groups (aerial, edge, clutter and fruitbat). Stable isotope analysis revealed that the range of δ 13 C values was almost double in rainforest than in savannah indicating a greater range of utilization of basal C 3 and C 4 resources in the former site, covering primary productivity from both these sources. The ranges in δ 15 N, however, were similar between the two habitats suggesting a similar number of trophic levels. Niche breadth, as defined by either standard ellipse area or convex hull, was greater for the bat community in rainforest than in savannah, with all four foraging groups having larger niche breadths in the former than the latter. The higher inter-species morphospace and niche breadth in forest bats suggest that species packing is not necessarily competitive. By employing morphometrics and stable isotope analysis, we have shown that the rainforest bat community packs more species in morphospace and uses a larger niche breadth than the one in savannah.


2018 ◽  
Author(s):  
Anton M. Potapov ◽  
Stefan Scheu ◽  
Alexei V. Tiunov

Abstract1. Animals that have similar morphological traits are expected to share similar ecological niches. This statement applies to individual animals within a species and thus species often serve as the functional units in ecological studies. Species are further grouped into higher-ranked taxonomic units based on their morphological similarity and thus are also expected to be ecologically similar. On the other hand, theory predicts that strong competition between closely related species can lead to differentiation of ecological niches. Due to a high diversity and limited taxonomic expertise, soil food webs are often resolved using supraspecific taxa such as families, orders or even classes as functional units.2. Here we for the first time empirically tested the trophic consistency of supraspecific taxa across major lineages of temperate forest soil invertebrates: Annelida, Chelicerata, Myriapoda, Crustacea and Hexapoda. Published data on stable isotope compositions of carbon and nitrogen were used to infer basal resources and trophic level, and explore the relationship between taxonomic and trophic dissimilarity of local populations.3. Genera and families had normal and unimodal distributions of isotope niches, suggesting that supraspecific taxa are trophically consistent. The isotopic niche of populations across different localities is better predicted by species than by supraspecific taxa. However, within the same genus, the effect of species identity on stable isotope composition of populations was not significant in 92% of cases. The link to basal resources, i.e. plants or detritus, was convergent in different lineages, while trophic levels followed the Brownian motion taxonomic model. Virtually none of the studied taxa showed pronounced trophic niche conservatism within a lineage.4. Supraspecific taxa are meaningful as functional units in ecological studies, but the consistency varies among taxa and thus the choice of taxonomic resolution depends on the research question; generally, identification of taxa should be more detailed in more diverse taxonomic groups. We compiled a comprehensive list of mean Δ13C and Δ15N values of invertebrate taxa from temperate forest soils allowing to refine soil food-web models when identification to species level is not feasible.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3105
Author(s):  
Victor M. Muro-Torres ◽  
Felipe Amezcua ◽  
Martin Soto-Jiménez ◽  
Eduardo F. Balart ◽  
Elisa Serviere-Zaragoza ◽  
...  

The trophic ecology of wetlands with mangrove forests remains poorly understood. Through the use of stomach contents analysis, stable isotope signatures, and Bayesian mixing models, the food web of a tropical wetland in the gulf of California was investigated. Consumers had heterogeneous diets, omnivores were the most abundant species (47%), followed by planktivorous (21%), minor piscivores (10%), major piscivores (10%), macrobenthivores (9%), and herbivores (3%). The values of δ13C (from −12 to −29‰) and δ15N (from 4 to 24‰) showed a wide range of isotopic values of the consumers. Most of the species had a broad isotopic niche and there was a large diet overlap of species due to the exploitation of a common set of food resources. Five trophic levels were identified, with the weakfish (Cynoscion xanthulus) as the top predator of this system with detritus coming from the mangrove as the main source that supports the food chain. This highlights the importance of the mangrove forests to such ecosystems, because not only they are the most important primary food source, but also, they offer habitat to a large suite of fauna, which are important components of the trophic chain.


2020 ◽  
Author(s):  
Anna F Probert ◽  
Darren F Ward ◽  
Jacqueline R Beggs ◽  
Sarah J Bury ◽  
Syrie M Hermans ◽  
...  

Abstract Ants represent a highly diverse and ecologically important group of insects found in almost all terrestrial ecosystems. A subset of ant species have been widely transported around the globe and invade many natural ecosystems, often out-competing native counterparts and causing varying impacts on recipient ecosystems. Decisions to control non-native ant populations require an understanding of their interactions and related impacts on native communities. We employed stable isotope analysis and metabarcoding techniques to identify potential dietary niche overlap and identify gut contents of 10 ant species found in natural ecosystems in Aotearoa New Zealand. Additionally, we looked at co-occurrence to identify potential competitive interactions among native and non-native ant species. Ants fed mainly across two trophic levels, with high dietary overlap. Relative to other ant species sampled, two non-native ant species, Linepithema humile and Technomyrmex jocosus, were found to feed at the lowest trophic level. The largest isotopic niche overlap was observed between the native Monomorium antarcticum and the invasive Ochetellus glaber, with analyses revealing a negative co-occurrence pattern. Sequence data of ant gut content identified 51 molecular operational taxonomic units, representing 22 orders and 34 families, and primarily consisting of arthropod DNA. Although we generally found high dietary overlap among species, negative occurrence between a dominant, non-native species and a ubiquitous native species indicates that species-specific interactions could be negatively impacting native ecosystems. Our research progresses and informs the currently limited knowledge around establishing protocols for metabarcoding to investigate ant diet and interactions between native and non-native ant species.


Author(s):  
Marcos A. L. Franco ◽  
Alejandra F. G. N. Santos ◽  
Abílio S. Gomes ◽  
Marcelo G. de Almeida ◽  
Carlos E. de Rezende

AbstractEnvironmental factors, size-related isotopic changes of the most abundant species and isotopic niche overlap were investigated using stable isotopes in order to evaluate spatial changes of fish trophic guilds in the Araruama Lagoon. Based on 440 muscle samples, 17 fish species were grouped into five trophic guilds. Mean salinity was above 40 at both sites sampled and a significant spatial difference was observed. The highest δ13C mean value was observed for an omnivorous species, whereas the lowest carbon signatures were found for the three fish species belonging to the planktivorous guild. Analysis of the carbon signature of fish species in lower trophic levels showed influence of salinity variation, whilst size appeared to play a role for others. A narrow δ15N difference was observed, but the piscivorous fish species showed the highest δ15N values. The Standard Ellipses Analysis (SEA) detected spatial differences and varying degrees of isotopic niche overlap among trophic guilds, but the percentages of most overlaps (<60%) suggest that, to some extent, the guilds had a unique isotopic niche space. These results are in agreement with data previously reported for the Araruama Lagoon, that found the same prey items with varying relative importance among the most abundant species. Further studies are necessary to understand how the interaction between salinity and other factors, such as migration patterns, changes in prey availability, changes in contribution of primary sources and changes in baseline isotopic signatures could affect the stable isotope signatures shown here.


Author(s):  
Brook A. Niemiec ◽  
Jerzy Gawor ◽  
Shuiquan Tang ◽  
Aishani Prem ◽  
Janina A. Krumbeck

Abstract OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1–V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.


Author(s):  
Brandon D Hoenig ◽  
Allison M Snider ◽  
Anna M Forsman ◽  
Keith A Hobson ◽  
Steven C Latta ◽  
...  

Abstract Identifying the composition of avian diets is a critical step in characterizing the roles of birds within ecosystems. However, because birds are a diverse taxonomic group with equally diverse dietary habits, gaining an accurate and thorough understanding of avian diet can be difficult. In addition to overcoming the inherent difficulties of studying birds, the field is advancing rapidly, and researchers are challenged with a myriad of methods to study avian diet, a task that has only become more difficult with the introduction of laboratory techniques to dietary studies. Because methodology drives inference, it is important that researchers are aware of the capabilities and limitations of each method to ensure the results of their study are interpreted correctly. However, few reviews exist which detail each of the traditional and laboratory techniques used in dietary studies, with even fewer framing these methods through a bird-specific lens. Here, we discuss the strengths and limitations of morphological prey identification, DNA-based techniques, stable isotope analysis, and the tracing of dietary biomolecules throughout food webs. We identify areas of improvement for each method, provide instances in which the combination of techniques can yield the most comprehensive findings, introduce potential avenues for combining results from each technique within a unified framework, and present recommendations for the future focus of avian dietary research.


2020 ◽  
Vol 77 (8) ◽  
pp. 1348-1358 ◽  
Author(s):  
Jane S. Rogosch ◽  
Julian D. Olden

Food-web investigations inform management strategies by exposing potential interactions between native and nonnative species and anticipating likely outcomes associated with species removal efforts. We leveraged a natural gradient of compositional turnover from native-only to nonnative-only fish assemblages, combined with an intensive removal effort, to investigate underlying food-web changes in response to invasive species expansion in a Lower Colorado River tributary. Nonnative fishes caused coordinated isotopic niche displacement in native fishes by inducing resource shifts toward lower trophic positions and enriched carbon sources. By contrast, nonnative fishes did not experience reciprocal shifts when native fishes were present. Asymmetrical outcomes between native and nonnative fishes indicated species displacement may result from competitive or consumptive interactions. Native species’ isotopic niches returned to higher trophic levels after nonnative green sunfish (Lepomis cyanellus) removal, indicating removal efforts can support trophic recovery of native fishes like desert suckers (Catostomus clarkii) and roundtail chub (Gila robusta). Using stable isotope analysis in preremoval assessments provides opportunities to identify asymmetric interactions, whereas postremoval assessments could identify unintended consequences, like mesopredator release, as part of adaptive decision making to recover native fishes.


2014 ◽  
Vol 71 (10) ◽  
pp. 1520-1528 ◽  
Author(s):  
Julián Gamboa-Delgado ◽  
César Molina-Poveda ◽  
Daniel Enrique Godínez-Siordia ◽  
David Villarreal-Cavazos ◽  
Denis Ricque-Marie ◽  
...  

Carbon and nitrogen stable isotope values were determined in Pacific white shrimp (Litopenaeus vannamei) with the objective of discriminating animals produced through aquaculture practices from those extracted from the wild. Farmed animals were collected at semi-intensive shrimp farms in Mexico and Ecuador. Fisheries-derived shrimps were caught in different fishing areas representing two estuarine systems and four open sea locations in Mexico and Ecuador. Carbon and nitrogen stable isotope values (δ13CVPDB and δ15NAIR) allowed clear differentiation of wild from farmed animals. δ13CVPDB and δ15NAIR values in shrimps collected in the open sea were isotopically enriched (−16.99‰ and 11.57‰), indicating that these organisms belong to higher trophic levels than farmed animals. δ13CVPDB and δ15NAIR values of farmed animals (−19.72‰ and 7.85‰, respectively) partially overlapped with values measured in animals collected in estuaries (−18.46‰ and 5.38‰, respectively). Canonical discriminant analysis showed that when used separately and in conjunction, δ13CVPDB and δ15NAIR values were powerful discriminatory variables and demonstrate the viability of isotopic evaluations to distinguish wild-caught shrimps from aquaculture shrimps. Methodological improvements will define a verification tool to support shrimp traceability protocols.


Sign in / Sign up

Export Citation Format

Share Document