A comparison of desiccation-related proteins (dehydrin and QP47) in peas (Pisum sativum)

1995 ◽  
Vol 5 (4) ◽  
pp. 185-193 ◽  
Author(s):  
Ellen H. Baker ◽  
Kent J. Bradford ◽  
John A. Bryant ◽  
Thomas L. Rost

AbstractDehydrin and QP47, proteins present in mature pea seeds (Pisum sativum), have been proposed to play protective roles during desiccation. To identify possible relationships between these proteins and desiccation tolerance, their tissue locations and patterns of synthesis and degradation have been examined during germination. Tissue locations were determined by immunocytochemistry using polyclonal antibodies raised against a conserved dehydrin amino acid sequence and against purified QP47. In embryonic axis and cotyledon cells, QP47 and dehydrin were distributed uniformly with no apparent nuclear or organellar specificity. Both proteins were present in 24 h-imbibed axes that had not initiated radicle growth but were completely absent from 24 h-imbibed axes that had begun to grow. The amounts of QP47 and dehydrin in embryonic axes decreased with time after the start of imbibition and were undetectable by 48 h. When germination was prevented by polyethylene glycol (PEG) or abscisic acid (ABA), both proteins remained at their original amounts. Thus, both QP47 and dehydrin disappeared coincidently with the beginning of growth and not simply as a function of the time after imbibition. QP47 persisted in cotyledons until at least 31 days into seedling growth, whereas dehydrin was not detectable in cotyledons after 7 days. Dehydrin, but not QP47, could be re-induced in pea shoots and cotyledons by dehydration. The timing of degradation of both proteins was correlated with the loss of desiccation tolerance during germination of pea axes.

2021 ◽  
Author(s):  
Valentine Chartrel ◽  
Eric Dugat-Bony ◽  
Anne-Sophie Sarthou ◽  
Sophie Huchette ◽  
Pascal Bonnarme ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 391 ◽  
Author(s):  
Natalia Wojciechowska ◽  
Shirin Alipour ◽  
Ewelina Stolarska ◽  
Karolina Bilska ◽  
Pascal Rey ◽  
...  

Norway maple and sycamore produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Drying affects reduction and oxidation (redox) status in seeds. Oxidation of methionine to methionine sulfoxide (MetO) and reduction via methionine sulfoxide reductases (Msrs) have never been investigated in relation to seed desiccation tolerance. MetO levels and the abundance of Msrs were investigated in relation to levels of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide anion radical and hydroxyl radical (•OH), and the levels of ascorbate and glutathione redox couples in gradually dried seeds. Peptide-bound MetO levels were positively correlated with ROS concentrations in the orthodox seeds. In particular, •OH affected MetO levels as well as the abundance of MsrB2 solely in the embryonic axes of Norway maple seeds. In this species, MsrB2 was present in oxidized and reduced forms, and the latter was favored by reduced glutathione and ascorbic acid. In contrast, sycamore seeds accumulated higher ROS levels. Additionally, MsrB2 was oxidized in sycamore throughout dehydration. In this context, the three elements •OH level, MetO content and MsrB2 abundance, linked together uniquely to Norway maple seeds, might be considered important players of the redox network associated with desiccation tolerance.


Author(s):  
Vanessa Vernoud ◽  
Ludivine Lebeigle ◽  
Jocelyn Munier ◽  
Julie Marais ◽  
Myriam Sanchez ◽  
...  

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes which can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this paper, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions in Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1) which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, non-functional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavours in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.


1997 ◽  
Vol 77 (1) ◽  
pp. 101-103 ◽  
Author(s):  
T. D. Warkentin ◽  
A. G. Sloan ◽  
S. T. Ali-Khan

Field pea seeds from 10 cultivars grown at two locations in Manitoba in 1986 and 1987 were analyzed for proximate and mineral profiles. Cultivars differed significantly in their level of total protein, crude fat, ADF, and all minerals tested. However, differences were not extremely large and were comparable to European reports. Location-year also had a significant effect on the levels of total protein, ADF, and all minerals tested. In most cases, the warmest location-year produced relatively higher levels of minerals, ash, and total protein, and lower seed yield than the coolest location-year. Key words: Field pea, Pisum sativum L., mineral


1985 ◽  
Vol 63 (6) ◽  
pp. 1035-1039 ◽  
Author(s):  
R. J. Gorecki ◽  
G. E. Harman ◽  
L. R. Mattick

Pea seeds var. Kriter were stored aseptically at 92% relative humidity and 30 °C. After 0, 4, 6, 8, or 10 weeks of storage, viability, vigor, and volatile exudates were determined on sublots of seeds. As storage time increased, vigor, as measured by dehydrogenase activity, growth of embryonic axes, and conductivity decreased. Later, viability also decreased. Imbibing and germinating pea seeds produced ethanol, acetaldehyde, and lesser amounts of methanol. No qualitative differences in volatile exudates were observed from germinating seeds regardless of age or storage condition. Nonaged seeds with highest vigor produced the smallest amounts of volatiles, but with increased aging the quantities of ethanol and acetaldehyde gradually increased. Dry seed produced small quantities of both volatiles. The amount of these compounds produced reached a maximum between 12 and 48 h of germination. Infestation of seed samples with Enterobacter cloacae or Trichoderma harzianum reduced the quantities of these compounds measured. These results indicate that determinations of acetaldehyde and ethanol in the space over germinating seeds by means of gas chromatography may be a useful seed vigor test.


2010 ◽  
Vol 20 (4) ◽  
pp. 213-221 ◽  
Author(s):  
Lesław B. Lahuta ◽  
Wojciech Święcicki ◽  
Tomasz Dzik ◽  
Ryszard J. Górecki ◽  
Marcin Horbowicz

AbstractFeeding stem–leaf–pod explants with d-chiro-inositol and d-pinitol was used as a method to modify α-d-galactosides in developing pea (Pisum sativum) seeds. Four genotypes differing in the composition of raffinose, stachyose and verbascose (raffinose family oligosaccharides or RFOs) in seeds – high RFOs (cv. Tiny), low RFOs (SZD175) and low verbascose (cv. Hubal and cv. Wt 506) – were studied. Although seeds of all examined pea lines were able to take up both d-chiro-inositol and d-pinitol, only d-chiro-inositol was effectively converted into its galactosides: mainly fagopyritol B1 (O-α-d-galactopyranosyl-(1 → 2)-d-chiro-inositol) and fagopyritol B2 (O-α-d-galactopyranosyl-(1 → 6)-O-α-d-galactopyranosyl-(1 → 2)-d-chiro-inositol). In seeds of pea lines naturally containing low levels of verbascose (cv. Hubal) and low RFOs (SZD175), the enhanced accumulation of fagopyritols depressed the RFO level by c. 64 and 20%, respectively. Moreover, in both genotypes, about 25 and 30% of total galactose bound in α-d-galactosides occurred in fagopyritols. d-Pinitol present in the pea seeds was converted into monogalactosides, but their accumulation was several-fold lower than that of fagopyritols and did not significantly influence the accumulation of RFOs. Pea seeds with the composition of soluble carbohydrates modified by feeding with either of the cyclitols were able to complete germination.


2009 ◽  
Vol 116 (4) ◽  
pp. 906-910 ◽  
Author(s):  
Urszula Szymanowska ◽  
Anna Jakubczyk ◽  
Barbara Baraniak ◽  
Agnieszka Kur
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document