scholarly journals The J. Derek Bewley Career Lecture. Seeds–plants–crops–biodiversity–environment–people: illustrating understanding and ideas

2022 ◽  
pp. 1-8
Author(s):  
Richard H. Ellis

Abstract The J. Derek Bewley Career Lectures presented at the triennial meetings of the International Society of Seed Science support early-career seed scientists by providing retrospective views, from those late in their careers, of lessons learned and future implications. Ambition, ability, inspiration, foresight, hard work and opportunity are obvious career requirements. The importance of mentoring and teamwork combined with the clear communication of results, understanding and ideas are emphasized. The role of illustration in research, and its dissemination, is outlined: illustration can support hypothesis development, testing and communication. Climate change may perturb the production of high-quality seed affecting conservation as well as agriculture, horticulture and forestry. An illustrative synthesis of the current understanding of temporal aspects of the effects of seed production environment on seed quality (assessed by subsequent seed storage longevity) is provided for wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Seed science research can contribute to complex global challenges such as future food supplies from seed-propagated crops in our changing climate whilst conserving biological diversity (through seed ecology and technologies such as ex situ plant genetic resources conservation by long-term seed storage in genebanks), but only if that research can be – and then is – applied.

HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 203-204
Author(s):  
Kim E. Hummer

The fruits of the earth have healed, nurtured, and intrigued humanity throughout history. Cultivated fruit species have complex genome that will continue to require the input of novel genetic resources. Prospecting for wild fruit species will continue. The global nature of science and commerce will drive the demand to expand available genetic resources for fruit improvement. New technologies will enable future explorers to reach remote sites and species. Recent advances, such as geopositioning and remote-communication devices, will be used to a greater degree for targeting specific collection sites and documenting records of origin. The sovereignty of countries over their plant genetic resources, as specified by the Convention on Biological Diversity and the International Treaty on Plant Genetic Resources for Food and Agriculture, will continue to be a cornerstone for negotiating bilateral agreements and plant exchange. Although this could be considered a limitation to plant exploration in some situations, global strategies now in conceptual infancy will be developed to encourage and support ex situ preservation and continued plant exchange for long-term conservation and humanitarian benefit.


Author(s):  
S.N. Volkova S.N. ◽  
◽  
E.E. Sivak E.E.

Compliance with agronomic regulations in farms that ensure high quality seeds (conducting grade and species weeds on seed crops, compliance with harvesting, part-time, seed storage, etc.) must be constantly monitored in order to improve production on the way to the cultivation of high-quality seed material.


2005 ◽  
Vol 15 (2) ◽  
pp. 113-123 ◽  
Author(s):  
Pedro León-Lobos ◽  
Richard H. Ellis

Nothofagus alpina,N. obliqua,N. glauca,N. leonii,N. dombeyiandN. pumilioseeds exhibited consistent, albeit slight, sensitivity to extreme desiccation, but nevertheless maintained viability at low moisture contents and cool temperatures (–10° to –20°C) over 2 years.Nothofagus alpina,N. obliqua,N. glauca,N. leoniiandN. dombeyiconformed to the seed viability equation of Ellis and Roberts; sensitivity of longevity to temperature was quantitatively similar to that of crop seeds, sensitivity to moisture was somewhat less, and a low-moisture-content limit to the equation was detected at 4.8% moisture content in hermetic storage at 65 °C, and possibly similar moisture contents at 30–40°C. These five species show orthodox seed storage behaviour. Therefore,ex-situconservation of theseNothofagusspecies in seed banks is possible, but the quality of seed lots collected requires attention. Seed storage behaviour was not defined inN. pumilio: initial seed quality was poor and loss of viability was detected over 2 years at 0°, –10° and –20°C at 2.7% moisture content, but not at 5.2%. The results confirm that the economy of nature in seed storage physiology extends to forest tree seeds, but the repeated observation of reduced sensitivity of longevity to moisture in forest tree seeds requires further investigation.


2014 ◽  
Vol 41 (2) ◽  
pp. 90-99 ◽  
Author(s):  
M. Sun ◽  
J. F. Spears ◽  
T. G. Isleib ◽  
D. L. Jordan ◽  
B. Penny ◽  
...  

ABSTRACT Six Virginia-type peanut (Arachis hypogaea L.) cultivars and their paired backcross-derived high-oleate lines were grown during 2003 and 2004 in North Carolina to compare standard germination (SG), cool germination (CG), and electrical conductivity (EC) of seed. Oleic acid level had no influence on SG but did alter CG and EC compared to the corresponding normal oleate cultivars. Averaged across background genotypes, high-oleate lines had lower seed vigor than their paired lines with normal oleic content. The high-oleate lines of three of the six pairs had lower CG and higher EC. Planting and harvest date affected all the seed quality traits measured. Standard germination of both normal and high-oleate lines was reduced in 2004 when harvest was delayed, but was not affected in 2003. In 2003, CG of the high-oleate lines was lower than that of normal lines in three of the four production environments; EC was higher in the high-oleate lines in all planting date and harvest date combinations. In 2004, there was no difference between the CG of normal and high-oleate lines, but EC was higher in the high-oleate lines for three of the four environments. In the greenhouse, the Virginia-type cultivars NC-V 11 and Gregory, along with their paired backcross-derived high-oleate lines were compared at 22/18 C, 26/22 C and 30/26 C day/night temperature regimes. Seed oleic to linoleic acid (O/L) ratio of normal peanut grown in 30/26 C, 26/22 C, and 22/18 C, measured 1.9, 1.5, and 1.3, respectively. The O/L ratio for their high-oleate pairs decreased from 24.7 when grown in 30/26 C to 15.9 in 26/22 C and to 13.7 in 22/18 C. Temperature did not affect the fatty acid composition of axis total lipid or phospholipid fractions. The high-oleate trait was expressed in the axis lipids. The average O/L ratio of axes from normal peanut was 1.1 while that of high-oleate lines was 4.6. Likewise, axis phospholipids for normal and high-oleate lines were 1.0 and 5.9. A lower production environment temperature decreased the O/L ratio of seed oil of high-oleic peanut lines, and the high-oleate trait expressed in peanut seed storage lipids is also expressed in axis membrane lipids to a lesser degree.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1557
Author(s):  
Johannes M. M. Engels ◽  
Andreas W. Ebert

The history of ex situ conservation is relatively short, not more than a century old. During the middle of last century, triggered by the realization that genetic erosion was threatening the existing landraces and wild relatives of the major food crops, global efforts to collect and conserve the genetic diversity of these threatened resources were initiated, predominantly orchestrated by FAO. National and international genebanks were established to store and maintain germplasm materials, conservation methodologies were created, standards developed, and coordinating efforts were put in place to ensure effective and efficient approaches and collaboration. In the spontaneously developing global conservation system, plant breeders played an important role, aiming at the availability of genetic diversity in their breeding work. Furthermore, long-term conservation and the safety of the collected materials were the other two overriding criteria that led to the emerging international network of ex situ base collections. The political framework for the conservation of plant genetic resources finds its roots in the International Undertaking of the FAO and became ‘turbulent rapid’ with the conclusion of the Convention on Biological Diversity. This paper reviews the history of the global ex situ conservation system with a focus on the international network of base collections. It assesses the major ex situ conservation approaches and methods with their strengths and weaknesses with respect to the global conservation system and highlights the importance of combining in situ and ex situ conservation.


2014 ◽  
Vol 13 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Steven P. C. Groot ◽  
Liesbeth de Groot ◽  
Jan Kodde ◽  
Rob van Treuren

Plant genetic resources are conserved by genebanks mainly in the form of seeds. In most of the cases, the dried seeds can be stored for a considerable period of time, but eventually seed deterioration results in the inability to generate healthy seedlings. Prolonging seed longevity during storage reduces the frequency of regeneration, which is beneficial from a genetic as well as a management point of view. To reduce the rate of deterioration, cool and dry storage conditions are usually practised for long-term seed storage. In spite of the growing body of evidence that seed deterioration is predominantly caused by oxidative processes, the importance of seed storage under anoxic conditions has received little attention from the genebank community. Herein, we report on the effects of anoxia on seed viability, the oxygen uptake by dry seeds in closed containers and the permeability for oxygen of various seed storage containers. Our results confirm that the ageing of dry seeds is accelerated by the presence of oxygen in the storage environment. Therefore, we recommend that genebanks store dry seeds under anoxic conditions to prolong their longevity during ex situ conservation. To reduce the initial rate of viability loss, we further recommend that the period of temporary storage after seed harvest be minimized and also that the seeds are kept during this period under controlled conditions, including anoxia.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
JS Sung ◽  
CW Jeong ◽  
YY Lee ◽  
HS Lee ◽  
YA Jeon ◽  
...  

Based on personal accounts of their experiences conducting qualitative and quantitative research in the countries of the Middle East and North Africa, the contributors to this volume share the real-life obstacles they have encountered in applying research methods in practice and the possible solutions to overcome them. The volume is an important companion book to more standard methods books, which focus on the “how to” of methods but are often devoid of any real discussion of the practicalities, challenges, and common mistakes of fieldwork. The volume is divided into three parts, highlighting the challenges of (1) specific contexts, including conducting research in areas of violence; (2) a range of research methods, including interviewing, process-tracing, ethnography, experimental research, and the use of online media; and (3) the ethics of field research. In sharing their lessons learned, the contributors raise issues of concern to both junior and experienced researchers, particularly those of the Global South but also to those researching the Global North.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.


2007 ◽  
Vol 83 (5) ◽  
pp. 719-722
Author(s):  
J D Simpson ◽  
B S.P. Wang

The National Tree Seed Centre has been providing seed of known origin and quality for research for 40 years. Seed is also stored for long-term gene conservation purposes to provide a source of germplasm for future research and restoration. This is particularly important for species facing such threats as insect attack, disease, climate change, or conversion of forest land to non-forest uses. The Centre's inventory focuses on native tree and shrub species, striving to store samples from throughout their ranges. Over 26 000 seed samples have been sent to researchers in 65 countries, 70% of these samples being distributed within Canada. Seed research has always been a component of the Seed Centre's program. One notable accomplishment is the development of the Petawawa Germination Box. The Seed Centre participates in and contributes to activities of the Association of Official Seed Analysts, the International Seed Testing Association, and the IUFRO Seed Physiology and Technology Research Group. Key words: collection, dormancy, ex situ gene conservation, germination, research, seed, storage


Sign in / Sign up

Export Citation Format

Share Document