Developmental competence of ovine oocyte following vitrification: effect of oocyte developmental stage, cumulus cells, cytoskeleton stabiliser, FBS concentration, and equilibration time

Zygote ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Abolfazl Shirazi ◽  
Fatemeh Taheri ◽  
Hassan Nazari ◽  
Maryam Norbakhsh-nia ◽  
Ebrahim Ahmadi ◽  
...  

SummaryThe aim of the present study was to examine the effects of fetal bovine serum (FBS) concentration, equilibration time, and oocyte pre-treatment with cytochalasin B (CCB) on subsequent development of vitrified-warmed ovine immature (GVCOCs) and matured (MII) oocytes with (MIICOCs) or without cumulus cells (MIIDOs). In Experiment 1, the effects of FBS concentrations (10 and 20%) during the vitrification-warming procedure were examined. Survival rates after warming were not different between GVCOCs, MIICOCs and MIIDOs oocytes. After in vitro fertilization, rate of cleaved embryos in MIICOCs group at the presence of 20%FBS was higher than MIIDOs and GVCOCs groups. In Experiment 2, the effects of equilibration times (5, 7, and 10 min) were examined. There was no difference in survival rate of vitrified-warmed oocytes equilibrated at different times. Although, the rate of cleavage in MIICOCs and MIIDOs oocytes equilibrated for 10 and 7 min, respectively, was higher than 5 min equilibrated MIIDOs and 7 and 10 min equilibrated GVCOCs oocytes. In Experiment 3, the effects of oocyte pre-treatment with CCB were examined. Despite the insignificant difference in survival rate of vitrified-warmed ovine immature and matured oocytes, the rates of cleavage in CCB pretreated groups were significantly lower than untreated groups. Moreover, the blastocysts were only derived from those cumulus enclosed vitrified-warmed germinal vesicle (GV) and MII oocytes that had been exposed to 10% FBS in the absence of CCB. In conclusion, the presence of cumulus cells, 10% FBS, and the omission of CCB were beneficial for post-warming development of vitrified ovine oocytes.

2006 ◽  
Vol 18 (2) ◽  
pp. 149 ◽  
Author(s):  
L. Bogliolo ◽  
F. Ariu ◽  
I. Rosati ◽  
M. T. Zedda ◽  
S. Pau ◽  
...  

Few attempts have been carried out to cryopreserve equine oocytes, and an effective cryopreservation protocol is not defined yet. Studies were conducted to compare the viability of immature and in vitro-matured horse oocytes vitrified by the minimal volume cooling (MVC) cryotop vitrification method (Kuwayama et al. 2005 Reprod. BioMed. Online 11, 300–308). Oocytes were recovered from slaughterhouse ovaries and divided, on the basis of the morphology of cumulus cells, into cumulus-expanded (CE) and cumulus-compacted (CC) oocytes. Groups of CC and CE oocytes were vitrified immediately after recovery [germinal vesicle (GV) stage] or matured in vitro (IVM) and cryopreserved at the MII stage as follows: oocytes were incubated 30 min in TCM-199 + 20% FCS + 10% ethylene glycol (EG) + 10% DMSO, followed by 20 min in TCM-199 + 20% FCS + 20% EG + 20% DMSO + 0.25 M sucrose, loaded in cryotops (2 µL), and plunged into liquid nitrogen. Warming was performed at 38.5°C by washing the oocytes in TCM-199 + 20% FCS with decreasing sucrose concentrations (1.25 M, 0.62 M, 0.31 M). After warming oocytes cryopreserved at the GV stage were matured in vitro for 24 h (CE) or 36 h (CC) in TCM-199 + 10% FCS + FSH, LH each at (0.1 UI/mL) + cysteamine, fixed, and stained with glycerol-Hoechst 33342 to assess nuclear maturation. Oocytes vitrified at the MII stage were in vitro cultured for 2 h to evaluate their morphological survival on the basis of the presence of an intact zona pellucida and membrane. Nonvitrified oocytes undergoing the same maturation protocol were used as controls. Results (Table 1) indicated that the survival rate of oocytes vitrified at the GV stage, after IVM, was similar between CE and CC oocytes (43.6% vs 42.6%). Significantly (P < 0.01) higher numbers of vitrified CE MII oocytes (52.9%) survived, compared to CC (34.8%), after 2-h culture. The percentages of viable MII oocytes from CE and CC GV vitrified oocytes were 43.6% and 40.9% respectively and were comparable to those from vitrified MII oocytes (CE, 52.9%; CC, 34.8%) and control oocytes (CE, 56.4%; CC, 53.3%). In conclusion, the results of this study showed that vitrification by the MCV Cryotop method of horse oocytes at either the GV or the MII stage allows a similar number of viable mature oocytes to be recovered. Table 1. Maturation and survival rates of immature and mature equine oocytes vitrified by the MCV Cryotop method


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Lun Suo ◽  
Guang-Bin Zhou ◽  
Qing-Gang Meng ◽  
Chang-Liang Yan ◽  
Zhi-Qiang Fan ◽  
...  

SummaryCryopreservation can cause cumulus cell damage around the immature oocytes, which may result in poor subsequent development. To evaluate the effect of the meiosis stage on the cumulus cell cryoinjury and determine the suitable stage for cryopreservation in immature oocytes, mouse oocytes at germinal vesicle (GV) and germinal vesicle breakdown (GVBD) stages were vitrified using open pulled straw (OPS) method. Cumulus cells damage was scored immediately after thawing by double-fluorescent staining. The survival rate of the oocytes was evaluated and the subsequent development of oocytes was assessed through in vitro culture (IVC) and in vitro fertilization (IVF) separately. After vitrification, a higher proportion of cumulus cells of GV oocytes were damaged than those of GVBD and untreated control groups. The survival rate of vitrified GVBD oocytes (94.1%) was significantly higher (p < 0.05) than that of GV oocytes (85.4%). Oocytes vitrified at GVBD stage (55.7%) showed similar cleavage rate compared to those at GV stage (49.2%), but significantly higher (p < 0.05) blastocyst rate (40.9% vs. 27.4%). These results demonstrate that oocytes at GVBD stage remain better cumulus membrane integrity and developmental ability during vitrification than those at GV stage, indicating they are more suitable for immature oocytes cryopreservation in mice.


Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


2014 ◽  
Vol 26 (1) ◽  
pp. 193
Author(s):  
R. Appeltant ◽  
J. Beek ◽  
D. Maes ◽  
A. Van Soom

When using modern maturation conditions for in vitro maturation, pig oocytes yield ~20% blastocysts only. One problem is that cumulus cells, which are normally connected with the immature oocyte by cellular projections penetrating through the zona pellucida and with the oolemma via gap junctions, are prematurely losing these connections after the cumulus–oocyte complex is removed from the follicle. The oocyte possesses a type 3 phosphodiesterase, which degrades 3′,5′-cyclic adenosine monophosphate (cAMP), and this activity is inhibited by supply of 3′,5′-cyclic guanosine monophosphate (cGMP) to the oocyte via the cumulus cells. Consequently, cAMP levels, which are typically high during early stages of oocyte maturation in vivo, decrease, leading to spontaneous nuclear maturation and oocytes of low developmental competence. Therefore, the maintenance of these cumulus-oocyte connections is important to keep cAMP high and the oocyte under meiotic arrest. One way to prevent this drop in cAMP is using N6, 2′-o-dibutyryladenosine 3′,5′-cyclic monophosphate sodium (dbcAMP) that causes an arrest at germinal vesicle (GV) stage II (Funahashi et al. 1997 Biol. Reprod. 57, 49–53). Another option is collecting the oocytes in a medium containing the phoshodiesterase inhibitor, IBMX. The present study investigated the influence of IBMX on the progression of the GV of the oocyte after collection, just before the start of the maturation procedure. The GV stage was defined according to Sun et al. (2004 Mol. Reprod. Dev. 69, 228–234). In parallel with the findings on dbcAMP, we hypothesised an arrest at GV II by the presence of IBMX during collection. One group of oocytes were collected in HEPES-buffered TALP without IBMX (n = 375) and another group in the same medium containing 0.5 mM IBMX (n = 586). An average incubation time of 140 min was applied in both groups, and 3 replicates were performed. The proportions of oocytes before or at GV II and beyond GV II were compared in both groups using logistic regression analysis. The proportion of oocytes was included as dependent variable and group (IBMX addition or not) as independent variable. Replicate was also included in the model. The proportion of oocytes before or at GV II was not statistically significant between the group without and the group with IBMX (59.2 v. 58.7% respectively; P > 0.05). In conclusion, the use of IBMX during oocyte collection did not influence the state of the germinal vesicle of the oocyte during collection, indicating that IBMX did not cause a meiotic arrest in the oocytes during collecting in vitro.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenwei Jia ◽  
Xueli Wang

Abstract The present study aimed to evaluate the effects of C-type natriuretic peptide (CNP) on meiotic arrest and developmental competence of bovine oocyte derived from follicles of different sizes. Collected immature cumulus-oocyte complexes from small follicles (< 3 mm) and medium follicles (3–8 mm) were cultured for 6 h in basal medium supplementated without or with 200 nM CNP. We observed that CNP effectively sustained meiotic arrest at germinal vesicle stage in in vitro cultured bovine oocytes from follicles of different sizes. Moreover, CNP treatment significantly improved the levels of cGMP in both cumulus cells and oocytes, as well as the levels of cAMP in oocytes regardless of follicle size. Based on the above results, we tested the effect of a novel in vitro maturation (IVM) system based on CNP-pretreatment, including a pre-IVM phase for 6 h using 200 nM CNP, followed by a extended IVM phase for 28 h, on developmental competence of bovine oocyte derived from small follicles (< 3 mm) and medium follicles (3–8 mm) compared to standard IVM system. The results showed that athough the novel IVM system based on CNP-pretreatment enhanced the developmental potencial of oocytes obtained from large follicles, but had no effect on the developmental comptence of oocytes obtained from small follicles.


Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 795-804 ◽  
Author(s):  
Wen-Qing Shi ◽  
Shi-En Zhu ◽  
Dong Zhang ◽  
Wei-Hua Wang ◽  
Guo-Liang Tang ◽  
...  

This study was designed to examine the effect of Taxol pretreatment on vitrification of porcine oocytes matured in vitro by an open pulled straw (OPS) method. In the first experiment, the effect of Taxol pretreatment and fluorescein diacetate (FDA) staining on parthenogenetic development of oocytes was evaluated. In the second experiment, viability, microtubule organization and embryo development of oocytes were assessed after oocytes were exposed to vitrification/warming solutions or after vitrification with or without Taxol pretreatment. The results showed that Taxol pretreatment and/or FDA staining did not negatively influence the oocyte’s developmental competence after parthenogenetic activation. After being exposed to vitrification/warming solutions, the survival rate (83.3%) of the oocytes was significantly (P < 0.05) reduced as compared with that in the control (100%). Vitrification/warming procedures further reduced the survival rates of oocytes regardless of oocytes being treated with (62.1%) or without (53.8%) Taxol. The proportions of oocytes with normal spindle configuration were significantly reduced after the oocytes were exposed to vitrification/warming solutions (38.5%) or after vitrification with (10.3%) or without (4.1%) Taxol pretreatment as compared with that in control (76.8%). The rates of two-cell-stage (5.6–53.2%) embryos at 48 h and blastocysts (0–3.8%) at 144 h after activation were significantly reduced after exposure to vitrification/warming solutions or after vitrification as compared with control (90.9% and 26.6% respectively). However, the proportion of vitrified oocytes developed to two-cell stage was significantly higher when oocytes were pretreated with (24.3%) than without (5.6%) Taxol. These results indicate that pretreatment of oocytes with Taxol before vitrification helps to reduce the damage induced by vitrification and is a potential way to improve the development of vitrified porcine oocytes.


Reproduction ◽  
2002 ◽  
pp. 455-465 ◽  
Author(s):  
YH Choi ◽  
CC Love ◽  
LB Love ◽  
DD Varner ◽  
S Brinsko ◽  
...  

This study was undertaken to evaluate the development of equine oocytes in vitro and in vivo after intracytoplasmic sperm injection (ICSI) with either fresh or frozen-thawed spermatozoa, without the use of additional activation treatments. Oocytes were collected from ovaries obtained from an abattoir and oocytes classified as having expanded cumulus cells were matured in M199 with 10% fetal bovine serum and 5 microU FSH ml(-1). After 24-26 h of in vitro maturation, oocytes with a first polar body were selected for manipulation. Fresh ejaculated stallion spermatozoa were used for the experiment after swim-up for 20 min in sperm-Tyrode's albumen lactate pyruvate. Frozen-thawed spermatozoa from the same stallion were treated in a similar way. Spermatozoa were immobilized and injected into the oocytes using a Piezo drill. Presumptive zygotes were cultured in G1.2 medium for 20 or 96 h after the injection was administered, or were transferred to the oviducts of recipient mares and recovered 96 h later. In addition, bovine oocytes with first polar bodies were injected with the two types of stallion spermatozoa and fixed 20 h after injection to examine pronuclear formation. Fertilization rate (pronucleus formation and cleavage) at 20 h after injection of spermatozoa was not significantly different between fresh and frozen-thawed sperm groups in either equine or bovine oocytes. Pronucleus formation after injection of spermatozoa into bovine oocytes was significantly higher than that for equine oocytes (P < 0.05). There were no significant differences in cleavage rate or average number of nuclei at 96 h between equine oocytes injected with fresh or frozen-thawed spermatozoa. However, embryos developed in vivo for 96 h had a significantly higher number of nuclei in both sperm treatments compared with those cultured in vitro. These results indicate that good activation rates may be obtained after injection of either fresh or frozen-thawed equine spermatozoa without additional activation treatment. Injection of frozen-thawed equine spermatozoa results in similar embryo development to that obtained with fresh equine spermatozoa. In vitro culture of equine zygotes in G1.2 medium results in a similar cleavage rate but reduced number of cells compared with in vivo culture within the oviduct. Bovine oocytes may be useful as models for assessing sperm function in horses.


2008 ◽  
Vol 14 (6) ◽  
pp. 549-560 ◽  
Author(s):  
Morten R. Petersen ◽  
Michael Hansen ◽  
Birthe Avery ◽  
Ingrid B. Bøgh

AbstractOocyte maturation is known to affect the chances for successful fertilization, embryonic development, establishment of pregnancy and delivery of a live, healthy, and viable offspring. Two-photon laser scanning microscopy (TPLSM) has previously been used to evaluate early embryonic development without a detectable impairment of subsequent development, but has never been applied to assess mammalian oocytes throughout in vitro maturation (IVM). Visualization of structures within live oocytes during IVM, followed by fertilization and embryo culture, may improve the understanding of oocyte maturation. To visualize structures within bovine oocytes using TPLSM, it is necessary to remove the cumulus cells that normally surround the oocyte during maturation. Repeated visualization of structures within the same oocyte is possible, if movement of the oocyte can be avoided. In this article, we describe the development of a method for repeated intravital imaging of denuded bovine oocytes using an upright TPLSM equipped with a specially constructed incubator. Oocytes were stained with Hoechst 33258, and the nuclear structures were evaluated. Oocyte fertilization rate was not affected by TPLSM exposure, but the developmental capacity of the denuded oocytes was significantly reduced. This is, to our knowledge, the first article describing repeated intravital imaging during mammalian oocyte maturation using TPLSM.


2016 ◽  
Vol 28 (11) ◽  
pp. 1798 ◽  
Author(s):  
Li Shao ◽  
Ri-Cheng Chian ◽  
Yixin Xu ◽  
Zhengjie Yan ◽  
Yihui Zhang ◽  
...  

Cumulus cells (CCs) are distinct from other granulosa cells and the mutual communication between CCs and oocytes is essential for the establishment of oocyte competence. In the present study we assessed genomic expression profiles in mouse CCs before and after oocyte maturation in vitro. Microarray analysis revealed significant changes in gene expression in CCs between the germinal vesicle (GV) and metaphase II (MII) stages, with 2615 upregulated and 2808 downregulated genes. Genes related to epidermal growth factor, extracellular matrix (Ptgs2, Ereg, Tnfaip6 and Efemp1), mitochondrial metabolism (Fdx1 and Aifm2), gap junctions and the cell cycle (Gja1, Gja4, Ccnd2, Ccna2 and Ccnb2) were highlighted as being differentially expressed between the two development stages. Real-time polymerase chain reaction confirmed the validity and reproducibility of the results for the selected differentially expressed genes. Similar expression patterns were identified by western blot analysis for some functional proteins, including EFEMP1, FDX1, GJA1 and CCND2, followed by immunofluorescence localisation. These genes may be potential biomarkers for oocyte developmental competence following fertilisation and will be investigated further in future studies.


2004 ◽  
Vol 16 (2) ◽  
pp. 204 ◽  
Author(s):  
J. Ye ◽  
K.H.S. Campbell ◽  
M.R. Luck

It is suggested that the relatively high rates of polyspermic fertilization and poor development of pig embryos produced in vitro are caused by asynchronous oocyte maturation. We have recently shown that pre-treatment of pig oocytes with cycloheximide (CHX) is an efficient way of synchronizing their meiotic maturation in vitro. However, it is not known whether this procedure affects fertilization or further development. The present study examined the effects of CHX-synchronised meiotic maturation on subsequent embryo development and the response to FSH. Pig ovaries were collected from a local abattoir. Cumulus-oocyte complexes (COCs) were aspirated from 3–5mm diameter follicles with a translucent appearance and extensive vascularization. COCs were first pre-incubated in defined maturation medium (DM; M199 with Earle’s salts, 25mM HEPES and sodium bicarbonate, 3mM L-glutamine, 0.1% (w/v) BSA, 0.57mM cysteine, 10ngmL−1 EGF, 0.2μgmL−1 pLH, 100μmL−1 penicillin and 0.1mgmL−1 streptomycin) or in DM supplemented with 50ngmL−1 pFSH (DMF) and 5μgmL−1 CHX for 12h. COCs were then further cultured in the same DM without CHX for 24–30h or in DMF for 36h. For controls, COCs were cultured conventionally in DM for 42h or DMF for 48h. After removal of cumulus cells, all cultured oocytes were inseminated with ejaculated sperm at a final concentration of 300000mL−1 for 6h. The IVF medium was modified Tris-buffered medium containing 0.1% BSA, 20μM adenosine and 0.2mM reduced glutathione. Putative embryos were cultured in NCSU23 without glucose but supplemented with 4.5mM Na lactate and 0.33 mM Na pyruvate for 2 days. Cleaved embryos were further cultured in normal NCSU23 for 4 days. IVM and IVF were performed in 5% CO2 in air and IVC in 5% CO2, 5% O2, 90% N2, all at 39°C and 95% RH. Three replicates with DM, with or without CHX, and one with DMF, with or without CHX, were performed with 30–50 oocytes in each replicate. Statistical comparisons were by t-test. The result with DM showed that the rate for normal cleavage at 2 days after insemination of CHX-treated oocytes (40.6±3.8%) was similar to that of controls (40.4±3.5%). However, the proportion developing to healthy blastocysts at Day 6 was significantly higher in the CHX-treated group (16.9±1.2%) than in controls (9.6±1.3%; P&lt;0.05). A significantly higher number of Day 2-cleaved embryos from CHX-treated oocytes developed to the day 6 blastocyst stage compared with controls (44.7±5.0% and 22.3±2.4%, respectively; P&lt;0.05). Supplementation of the basic maturation medium with pFSH increased the rate of cleavage in both CHX-treated oocytes (73.2%) and controls (76.9%) and increased the proportions developing to healthy blastocysts at Day 6 (CHX-treated: 39.0%; control: 11.5%). We conclude that oocytes pre-treated with CHX retain their developmental competence and that meiotic synchronization with CHX improves the efficiency of in vitro production of pig embryos. (Supported by BBSRC 42/S18810.)


Sign in / Sign up

Export Citation Format

Share Document