Sperm chromatin protamination influences embryo development in unsexed and sexed bull semen

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Thiago Velasco Guimarães Silva ◽  
Priscila Di Paula Bessa Santana ◽  
Eduardo Baia de Souza ◽  
Ana Júlia Mota de Lima ◽  
Caroline de Araújo Santos ◽  
...  

Summary Sex selection through sperm sorting offers advantages in regards selection pressure in high-producing livestock. However, the sex-sorting process results in sperm membrane and DNA damage that ultimately decrease fertility. We hypothesized that given the role of protamines in DNA packaging, protamine deficiency could account, at least partially, for the DNA damage observed following sperm sex sorting. To test this, we compared protamine status between unsexed and sexed spermatozoa from two bulls using the fluorochrome chromomycin A3 (CMA3) and flow cytometry. Then, we assessed embryo development following in vitro fertilization (IVF) using the same sperm treatments. Overall, sperm protamination was not different between sexed and unsexed semen. However, one of the two bulls displayed higher rates of protamine deficiency for both unsexed and sexed semen (P < 0.05). Moreover, unsexed semen from this bull yielded lower blastocyst (P < 0.05) and blastocyst hatching rates than unsexed sperm from the other bull. CMA3-positive staining was negatively correlated with cleavage (R2 85.1, P = 0.003) and blastocyst hatching (R2 87.6, P = 0.006) rates in unsexed semen. In conclusion, while the sex-sorting process had no effect on sperm protamine content, we observed a bull effect for sperm protamination, which correlated to embryo development rates following IVF.

2005 ◽  
Vol 11 (2) ◽  
pp. 198-205 ◽  
Author(s):  
Hossein Nasr-Esfahani Mohammad ◽  
Salehi Mohammad ◽  
Razavi Shahnaz ◽  
Anjomshoa Maryam ◽  
Rozbahani Shahla ◽  
...  

2016 ◽  
Vol 28 (2) ◽  
pp. 183
Author(s):  
S. J. R. Rodriguez ◽  
Y. E. Ramirez ◽  
E. Gomes ◽  
L. F. Nasser ◽  
J. H. F. Pontes ◽  
...  

The objective of this work was to compare in vitro embryo production of Bos taurus × Bos indicus cross embryos using oocytes from Holstein donors under different production and environment systems. This study also examined the possibility for in vitro production using oocytes imported and transported fresh between the USA and Panama. All animals were mature Holstein cows going through a normal lactation. The first group of donors was from the University of Illinois dairy herd and went through 3 ovum pickup sessions. The second group of donors were Holstein cows already adapted to Panama and went through 10 ovum pickup sessions. The Panamanian herd of Holstein donors were born and raised in Panama in an area of mountains, on average 1300 m above sea level. This environment does not have the typical hot and humid tropical weather seen in other regions of Panama. Both groups of donors were aspirated without stimulation during the years 2013 and 2014. Oocytes recovered from donors in Illinois were imported fresh under a special sanitary research protocol between Panama and the University of Illinois. The transport of fresh oocytes from the USA to Panama was done using a portable incubator set at 39°C (Minutube of America). Oocytes were matured during transport in 5-mL tubes (~30–35 oocytes per tube) containing 400 µL of maturation media (TCM-199) that had been equilibrated with 5% CO2. Oocytes recovered from donors in Panama were matured using the same media. For both groups, oocytes were inseminated 24 h after ovum pickup using sexed semen from the same bull. All embryo production procedures followed the protocols of the In vitro Brasil™ commercial system. At 72 h postinsemination, cleavage was evaluated. On Day 7 after insemination, embryo development to the blastocyst stage (early to expanded) was recorded. Data were analysed using Chi-squared. As shown in Table 1, there was no effect of oocyte collection location on embryo development. These results indicate that it is possible to produce a viable in vitro-produced embryo using fresh oocytes collected and transported from different countries. This work opens the possibility to access superior genetics and improve herds in countries seeking to increase their production systems and potentially improve their quality of life. Table 1.Effect of oocyte collection location on embryo development This project was supported by Programa de Competitividad ProCom Senacyt, Panama.


2008 ◽  
Vol 20 (1) ◽  
pp. 178
Author(s):  
S. A. Chaubal ◽  
T. L. Nedambale ◽  
J. Xu ◽  
C. Shaffer ◽  
T. Kilmer ◽  
...  

The objective of this study was to examine the effect of heparin on bovine IVF and to improve the efficiency of IVF production by using sex-sorted sperm. The fertility performance of sex-sorted and unsorted semen from 4 bulls was compared to determine the optimal heparin concentration during preimplantational embryo development. A total of 7615 matured bovine oocytes were randomly allocated among different heparin concentrations (0, 2.5, 5, 10, 20, 40, 60, 80, and 100 μg mL–1) in Brackett-Oliphant medium and coincubated with either sex-sorted or unsorted sperm for 6 h. Presumptive zygotes were cultured in CR1aa+ 6 mg mL–1 of BSA in 5% O2 , 5% CO2 and 90% N2 at 39°C until Day 8 (Day 0, culture post-IVF). Cleavage rates at Day 2 and embryo development to blastocyst (BL) at Day 8 were recorded. Data (4 replicates) were analyzed by a general linear model (SPSS 11.0, SPSS Inc., Chicago, IL). The optimal heparin concentration for each treatment was determined as the lowest value from those groups that resulted in the highest BL rates. The results (Table 1) demonstrated that a differential requirement of heparin concentration was important for the highest preimplantational BL development between sexed sperm and unsorted control within each bull. By optimizing heparin concentration, in 3 out of 4 (75%) bulls, the in vitro BL development with sex-sorted sperm could be increased to a level that was comparable to the highest BL rate from unsorted sperm (bulls A, B, and C, P > 0.05). A higher heparin concentration was required for optimal BL development in bulls A and C; however, a lower concentration was desirable for bulls B and D, indicating that a partial capacitation to the sperm may have taken place in bulls B and D during the sorting process, as reported by Lu and Seidel (2004 Theriogenology 62, 819–830). The fertility of sorted sperm from bull D (1 out of 4, 25%) was adversely affected, even after heparin optimization for BL development (P < 0.05). This result suggests that sperm sorting could affect the IVF fertility of sorted sperm in a bull-specific manner, but it was not significant for all bulls. Table 1. Blastocyst (BL) development in bovine IVF after heparin optimization using sorted and unsorted sperm This project was supported by the SBIR program under a USDA Cooperative State Research, Education, and Extension Service (CSREES) grant to F. Du (USDA #2006-03069).


2004 ◽  
Vol 16 (2) ◽  
pp. 253 ◽  
Author(s):  
L. Ferré ◽  
C. Ohlrichs ◽  
D. Faber

The production of pre-sex-selected calves by in vitro fertilization (IVF), using sexed semen, does show some benefits due to the small quantity of sperms needed for the process as compared to other reproductive technologies. The objective of this study was to determine differences among bulls and sperm concentrations in embryo development with sexed and unsexed semen. Follicles ranging from 2 to 6mm in diameter were aspirated from slaughterhouse ovaries. COC were selected and matured in groups of maximum of 30 in 1.8mL of TCM-199, supplemented with 10% fetal calf serum, 0.01UmL−1 bFSH, 0.01UmL−1 bLH and 10μLmL−1 penicillin-streptomycin for 24h at 38.5°C. Fertilization (Day 0) was carried out in micro-drops (50μL) with TALP-FERT medium containing PHE (3μgmL−1 penicillamine, 11μgmL−1 hypotaurine and 0.18μgmL−1 epinephrine), 10μLmL−1 non-essential amino acid and 2μgmL−1 heparin. Frozen/thawed sexed (female) and non-sexed sperms from five bulls were selected in a discontinuous percoll gradient. Sperm concentration was 1×106 for non-sexed semen and 1×106 or 2×106 for sexed semen. After 18–20h, presumptive zygotes were denuded and cultured in groups of 10 in 50-μL micro-drops of SOF citrate with 5% FCS (Holm P et al., 1999 Theriogenology 52, 683–700) under paraffin oil in a 5% O2, 5% CO2, 90% N2 atmosphere with high humidity. On Day 7, blastocysts (BL) were morphologically evaluated and recorded. Results are shown in Table 1. Data was compared by chi-square analysis. Sexed frozen bovine sperm can be used successfully in IVF systems. More research needs to be done to optimize and standardize bovine in vitro fertilization with sexed semen. Table 1 Results of comparisons between bulls, sperm concentrations, cleavage and embryo development


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alma López ◽  
Miguel Betancourt ◽  
Yvonne Ducolomb ◽  
Juan José Rodríguez ◽  
Eduardo Casas ◽  
...  

Abstract Background The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. Results The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. Conclusion This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.


2021 ◽  
Author(s):  
Alma López ◽  
Miguel Betancourt ◽  
Yvonne Ducolomb ◽  
Juan José Rodríguez ◽  
Eduardo Casas ◽  
...  

Abstract Oocyte vitrification has become an important tool for the improvement of assisted reproduction in humans and other mammalian species. The toxicity and use of high cryoprotectants concentrations have been a limiting factor for cryopreservation success. The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Alterations produced in these cells could compromise oocyte maturation, fertilization, and embryo development. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants or vitrification affects both oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length and Olive Tail Moment. Results demonstrate that oocyte exposure to cryoprotectants or vitrification reduced oocyte and cumulus cells viability compared to control. Also, significantly higher DNA damage was generated in the cumulus cells after exposure to cryoprotectants and vitrification compared to control. In addition, fertilization and embryo development rates also decreased after exposure to cryoprotectants and vitrification. It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in oocyte fertilization and embryo development to the blastocyst stage was observed after cryoprotectants exposure or vitrification. This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification, and the search for new vitrification strategies to increase fertilization and embryo development rates.


2005 ◽  
Vol 17 (2) ◽  
pp. 308
Author(s):  
M. Katayama ◽  
T. Cantley ◽  
A. Rieke ◽  
B. Day

The effect of a cysteine supplement in culture media for oocytes matured in vitro after intracytoplasmic sperm injection (ICSI) on fertilization and embryo development were examined. In the first experiment, sperm injected oocytes were cultured in NCSU23 (control) or NCSU23 supplemented with 0.57–3.71 mM cysteine (0.57–3.71 Cys) for 12 h after ICSI, and then fixed to observe pronuclear formation. In the second experiment, to examine the appropriate duration time of cysteine supplement to support fertilization, sperm-injected oocytes were transferred into NCSU23 following culture in NCSU23 supplemented with 1.71 mM cysteine for 1, 2, 3, 4, 5, 6, or 9 h after ICSI, and then fixed at 12 h. At the same time, morphological changes of sperm heads in oocytes cultured in NCSU23 (1.71 Cys) were observed. In the third experiment, to examine the developmental ability of ICSI embryos fertilized in NCSU23 (1.71 Cys), sperm injected oocytes were cultured under the following conditions for a total of 168 h; NCSU23 (control), NCSU23 (1.71 Cys) for 3 h followed by transfer into NCSU23 (1.71 Cys-3 h), NCSU23 (1.71 Cys) for 12 h followed by transfer in NCSU23 (1.71 Cys-12 h), or NCSU23 (1.71 Cys) (1.71 Cys). Data were pooled from at least five replicates. Values in each replicate were analyzed using one-way ANOVA. Significance of differences was assessed by Student's t-test. Culture with several concentrations of cysteine for 12 h showed that 1.71–3.71 Cys significantly (P < 0.05) increased fertilization rates above controls or 0.57 Cys (56–60%, 35%, or 48%, respectively). Culture for several duration times with 1.71 Cys showed that fertilization rates increased as the duration time increased to 3 h which was significantly (P < 0.05) higher than controls (68% and 34%, respectively), and culture times of greater than 3 h did not increase fertilization rates (58–68%). At 3 h, 59% of oocytes cultured in NCSU23 (1.71 Cys) had decondensed sperm heads and 16% of those had enlarged sperm heads. At 6 h, 50% of oocytes cultured in NCSU23 (1.71 Cys) had male pronuclei. Blastocyst formation rate in 1.71 Cys-3 h was 29% which was higher than for controls (20%). On the other hand, 1.71 Cys-12 h cultures showed low blastocyst formation rates, and continuous culture in NCSU23 (1.71 Cys) for 168 h (1.71 Cys) significantly (P < 0.05) decreased blastocyst rates (16% and 7%, respectively). We found that the supplement of 1.71 mM cysteine to NCSU23 for culture of oocytes after ICSI improved fertilization rates. However, the presence of 1.71 mM cysteine for 12 h or longer after ICSI had adverse effects on embryo development. Since 1.71 mM cysteine supplement for 3 h after ICSI improved blastocyst formation with the same fertilization rates as when supplemented for 12 h, the presence of cysteine only during the decondensation of sperm chromatin was found to be associated with the improvement of fertilization and also the promotion of blastocyst formation.


2018 ◽  
Vol 30 (1) ◽  
pp. 162
Author(s):  
L. Palazzese ◽  
D. A. Anzalone ◽  
J. Gosálvez´ ◽  
P. Loi ◽  
J. Saragusty

Sperm freeze-drying is a revolutionary technique that resolves many of the drawback of long-term storage under liquid nitrogen. The first significant result of this method was provided by Wakayama and Yanagimachi (1998 Nat. Biotechnol. 16, 639-641, 10.1038/nbt0798-639), demonstrating for the first time the birth of healthy offspring from epididymal freeze-dried (mouse) spermatozoa. Besides models in the mouse and rat, which are the first small mammals born from epididymal lyophilized sperm by intracytoplasmic sperm injection (ICSI), most studies in this field have used ejaculated sperm. In this work, aiming to repeat the result of Wakayama and Yanagimachi, we tried to apply this technique to epididymal spermatozoa from a large mammal (ram). Moreover, we checked the correlation between freeze-dried spermatozoa DNA integrity and embryo development. To do this, epididymal sperm from 4 rams was lyophilized in a medium containing trehalose, glucose, KCl, HEPES, and Trolox. To evaluate DNA damage and fragmentation at rehydration, part of the sperm was processed for sperm chromatin dispersion test (SCD) and two-tailed comet assay and the rest was used for ICSI. Compared with rams 1 and 3, rams 2 and 4 had higher rate of spermatozoa with intact DNA (median: 3.3% v. 16.5%, respectively), lower rate of single strand breaks (SSB; median: 94.2% v. 81.5%, respectively) and lower rate of double-strand breaks (DSB; median: 2.5% v. 2%, respectively). Embryo development following ICSI showed that blastocyst stage was reached only from rams that had sperm with more intact DNA: ram 2 (4.8%, n = 83) and ram 4 (6.3%, n = 64). Spermatozoa from rams 1 and 3 produced no blastocysts. This can be explained by the fact that rams 2 and 4 had higher rate of spermatozoa with intact DNA than rams 1 and 3. Definitively, the implication of sperm DNA damage in embryonic development should depend on the balance between the extent of sperm DNA fragmentation, the type of fragmentation (SSB or DSB), and the oocyte’s repair capacity. Rams 2 and 4 were the only rams that produced blastocyst probably because they had considerably more sperm with normal DNA; thus, it is important to select spermatozoa of the best quality to perform a good ICSI. Fragmentation of DNA due to the lyophilization process impairs embryonic development. To conclude, oocytes injected with epididymal freeze-dried ram spermatozoa can reach the blastocyst stage. These are preliminary results; more conclusive outcomes will be given following embryo transfer experiments that are now in progress.


Reproduction ◽  
2010 ◽  
Vol 140 (3) ◽  
pp. 445-452 ◽  
Author(s):  
Paola Villani ◽  
Patrizia Eleuteri ◽  
Maria Giuseppa Grollino ◽  
Michele Rescia ◽  
Pierluigi Altavista ◽  
...  

Sperm DNA damage may have adverse effects on reproductive outcome. Sperm DNA breaks can be detected by several tests, which evaluate DNA integrity from different and complementary perspectives and offer a new class of biomarkers of the male reproductive function and of its possible impairment after environmental exposure. The remodeling of sperm chromatin produces an extremely condensed nuclear structure protecting the nuclear genome from adverse environments. This nuclear remodeling is species specific, and differences in chromatin structure may lead to a dissimilar DNA susceptibility to mutagens among species. In this study, the capacity of the comet assay in its two variants (alkaline and neutral) to detect DNA/chromatin integrity has been evaluated in human, mouse, and bull sperm. The hypothesis that chromatin packaging might influence the amount of induced and detectable DNA damage was tested by treating sperm in vitro with DNAse I, whose activity is strictly dependent upon its DNA accessibility. Furthermore, hydrogen peroxide (H2O2) was used to assess whether spermatozoa of the three species showed a different sensitivity to oxidative stress. DNAse I-induced damage was also assessed by the sperm chromatin structure assay and the TUNEL assay, and the performances of these two assays were compared and correlated with the comet assay results. Results showed a different sensitivity to DNAse I treatment among the species with human sperm resulting the most susceptible. On the contrary, no major differences among species were observed after H2O2 treatment. Furthermore, the three tests show a good correlation in revealing sperm with DNA strand breaks.


2006 ◽  
Vol 18 (2) ◽  
pp. 280
Author(s):  
J. A. Visintin ◽  
A. S. Lima ◽  
A. B. Nascimento ◽  
A. C. Nicacio ◽  
M. G. Marques ◽  
...  

The aim of this work was to study the influence of maturation media NCSU23, Whitten, and TCM199 on in vitro development of swine embryos. Oocytes from slaughtered gilt ovaries were in vitro-matured (IVM) with NCSU23 (n = 148), Whitten (n = 151), and TCM199 (n = 170) media for 44 h. After IVM, all oocytes were fertilized in mTBM medium for 6 h and cultured in NCSU23 with 0.4% BSA for 5 days. After Day 5, all embryos were cultured in NCSU23 supplemented with 20% FCS for 4 days. Cleavage, blastocyst, and hatching rates were evaluated. Cleavage rates were 29% for NCSU23, 35.8% for Whitten, and 42.3% for TCM199 maturation media, with no significant difference among media (P > 0.05). Blastocyst rates were similar (P > 0.05), 18.9%, 21.8%, and 20%, respectively, for NCSU23, Whitten and TCM199 maturation media. Hatching rates were 16.1%, 34.3%, and 32.3%, respectively, for NCSU23, Whitten, and TCM199 maturation media, with no significant differences (P > 0.05). In conclusion, all three maturation media supported IVF, allowing embryo development from cleavage until blastocyst hatching.


Sign in / Sign up

Export Citation Format

Share Document