Fresh oocyte cycles yield improved embryo quality compared with frozen oocyte cycles in an egg-sharing donation programme

Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Amanda Souza Setti ◽  
Daniela Paes de Almeida Ferreira Braga ◽  
Assumpto Iaconelli ◽  
Edson Borges

Summary The objective of this study was to investigate any effect of cryopreservation of donated eggs on laboratorial and clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles. This retrospective cohort study included 320 oocyte recipients undergoing 307 vitrified and 119 fresh oocyte recipient ICSI cycles, participating in an egg-sharing donation programme, from 2015 to 2018, in a private university-affiliated in vitro fertilization (IVF) centre. A review of donor and recipient ICSI cycles was charted. A general mixed models fit by restricted maximum likelihood, followed by Bonferroni post hoc test was used to compare the means between fresh and warm oocyte donation groups and investigate the effect of cryopreservation on recipient ICSI outcome. The main outcome measure was blastocyst development rates. Fertilization rate, high-quality embryo rates on days 2 and 3, normal cleavage speed rates on days 2 and 3, and blastocyst development rate were significantly higher for the fresh oocyte donation cycles compared with warmed oocyte donation cycles. In the egg-sharing donation programme, fertilization and embryo developmental competence were reduced when vitrified oocytes from infertile couples were used for ICSI compared with fresh oocytes.

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Amanda Souza Setti ◽  
Daniela Paes de Almeida Ferreira Braga ◽  
Assumpto Iaconelli ◽  
Edson Borges

Summary The objective of this study was to investigate the effect of oocyte and sperm cryopreservation on donated eggs submitted to intracytoplasmic sperm injection (ICSI) cycles. Medical charts of 122 oocyte recipients undergoing 152 oocyte recipient ICSI cycles, from 2017 to 2018, in a private university-affiliated in vitro fertilization (IVF) centre, were reviewed in this historical cohort study. Cycles were divided into four groups according to the gamete status: the FO/FS Group, recipients in which fresh oocytes were injected with fresh sperm (n = 19); the FO/CrS Group, recipients in which fresh oocytes were injected with cryopreserved sperm (n = 14); the CrO/FS Group, recipients in which cryopreserved oocytes were injected with fresh sperm (n = 85); and the CrO/CrS Group, recipients in which cryopreserved oocytes were injected with cryopreserved sperm (n = 34). Generalized mixed models fit by restricted maximum likelihood, followed by Bonferroni post hoc test for the comparison of means amongst groups were used to investigate the effect of cryopreservation on recipient ICSI outcomes. The results were expressed as mean differences with 95% confidence intervals and P-values. The main outcome measure was the implantation rate. Normal day 3 cleavage speed, blastocyst development and implantation rates were significantly lower in the CrO/CrS Group compared with the FO/FS Group. In conclusion, embryo developmental competence and implantation potential were reduced when vitrified oocytes were injected with frozen sperm in an egg-sharing donation programme.


2017 ◽  
Vol 29 (1) ◽  
pp. 148
Author(s):  
A. Mesalam ◽  
I. Khan ◽  
K.-L. Lee ◽  
S.-H. Song ◽  
M.-D. Joo ◽  
...  

The 2-methoxystypandrone (2-MS) is a naphthoquinone isolated from Polygonum cuspidatum. The objective of this study was to investigate the effects of 2-MS on oocyte maturation, blastocyst development, and embryo quality in terms of cell number and gene expression in vitro. A total of 2364 oocytes were cultured in TCM-199 supplemented with 10% fetal bovine serum, 1 μg mL−1 oestradiol-17β, 10 μg mL−1 FSH, 10 ng mL−1 epidermal growth factor, 0.6 mM cysteine, and 0.2 mM sodium pyruvate and supplemented with different concentrations of 2-MS as following: 1.5 μM (n = 458), 1.0 (n = 493), 0.5 (n = 468), 0.1 (n = 470), and 0 μM (control, n = 475) followed by IVF and then culture in CR1-aa medium supplemented with 44 μg mL−1 sodium pyruvate, 14.6 μg mL−1 glutamine, 10 μL mL−1 penicillin-streptomycin, 3 mg mL−1 BSA, and 310 μg mL−1 glutathione for the first 3 days, and then the BSA was replaced with 10% FBS until Day 8. The differences in embryo development between experimental groups were analysed by one-way ANOVA. The Duncan’s multiple range tests were used to test the differences between the treatments. The level of statistical significance was set at P < 0.05. The results showed that the addition of 2-MS at 1.0 mM significantly improved (P < 0.05) the percentage of MII oocytes, which were identified by aceto-orcein staining, compared with that in the control (76.5 v. 65.4%, respectively), and remarkably (P < 0.05), improved blastocyst development rates (45.29%) compared with control (32.21%). Additionally, TUNEL assay demonstrated that treatment with 1.0 μM of 2-MS significantly improved the embryo quality by increasing total number of cells and reducing DNA damage. Immunofluorescent analysis showed that the protein levels of nuclear factor-kappa B (NFkB), inhibitor of kappa B kinase β (IkKβ), 8-oxoguanine, and cyclooxygenase-2 (COX2) declined significantly (P < 0.05) after 2-MS treatment compared with the control. These results were confirmed by qRT-PCR, which showed a significant decrease in the mRNA levels of NFkB, IkKβ, COX2, inducible nitric oxide synthase (iNOS), BCL2-associated X protein (BAX), caspase-3, and Janus kinase2 (JAK2) after 2-MS treatment; however, the mRNA level of the anti-apoptotic gene B-cell lymphoma2 (BCL2) was significantly higher than that in the control. In conclusion, the addition of 2-MS at the indicated concentration dramatically improves the developmental competence of bovine in vitro-produced embryos. This work was supported by a grant from the Next-Generation BiogGeen21 (No. PJ01107703), IPET (No. 315017–5), BK21plus, and KGSP.


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 187-193 ◽  
Author(s):  
So Gun Hong ◽  
Goo Jang ◽  
Hyun Ju Oh ◽  
Ok Jae Koo ◽  
Jung Eun Park ◽  
...  

SummaryBrain-derived neurotrophic factor (BDNF) signalling via tyrosine kinase B receptors may play an important role in ovarian development and function. It has been reported that metformin elevates the activity of Tyrosine kinase receptors and may amplify BDNF signalling. The objective of this study was to investigate the effect of BDNF during in vitro maturation (IVM) and/or in vitro culture (IVC) (Experiment 1), and to evaluate the collaborative effect of BDNF and metformin treatment on the developmental competence of bovine in vitro fertilized (IVF) embryos (Experiment 2). In Experiment 1, BDNF, which was added to our previously established IVM systems, significantly increased the proportions of MII oocytes at both 10 ng/ml (86.7%) and 100 ng/ml (85.4%) compared with the control (64.0%). However, there was no statistically significant difference in blastocyst development between the control or BDNF-supplemented groups. In Experiment 2, in order to investigate the effect of BDNF (10 ng/ml) and/or metformin (10−5 M) per se, TCM-199 without serum and hormones was used as the control IVM medium. The BDNF (48.3%) and BDNF plus metformin (56.5%) significantly enhanced the proportions of MII oocytes compared with the control (34.4%). Although, BDNF or metformin alone had no effect in embryo development, BDNF plus metformin significantly improved early embryo development to the 8–16-cell stage compared with the control (16.5 vs. 5.5%). In conclusion, the combination of BDNF and metformin may have a collaborative effect during the IVM period. These results could further contribute to the establishment of a more efficient bovine in vitro embryo production system.


Author(s):  
Ales Sobek ◽  
Emil Tkadlec ◽  
Eva Klaskova ◽  
Martin Prochazka

Abstract The aim of this study was to evaluate if cytoplasmic transfer can improve fertilization and embryo quality of women with oocytes of low quality. During ICSI, 10–15% of the cytoplasm from a fresh or frozen young donor oocyte was added to the recipient oocyte. According to the embryo quality, we defined group A as patients in which the best embryo was evident after cytoplasmic transfer and group B as patients in which the best embryo was evident after a simple ICSI. We investigated in the period of 2002–2018, 125 in vitro fertilization cycles involving 1011 fertilized oocytes. Five hundred fifty-seven sibling oocytes were fertilized using ICSI only and 454 oocytes with cytoplasmic transfer. Fertilization rates of oocytes were 67.2% in the cytoplasmic transfer and 53.5% in the ICSI groups (P < 0.001). A reduction in fertilization rate was observed with increased women age in the ICSI but not in the cytoplasmic transfer groups. The best embryo quality was found after cytoplasmic transfer in 78 cycles (62.4%) and without cytoplasmic transfer in 40 cycles (32%, P < 0.001). No significant differences were detected between the age, hormonal levels, dose of stimulation drugs, number of transferred embryos, pregnancy rate and abortion rate between A and B groups. Cytoplasmic transfer improves fertilization rates and early embryo development in humans with low oocyte quality. All 28 children resulting from cytoplasmic transfer are healthy.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Bernd Lesoine ◽  
Pedro-Antonio Regidor

Polycystic ovarian syndrome (PCOS) is one of the pathological factors involved in the failure of in vitro fertilization (IvF). The aim of the present study was to investigate if the combination of myoinositol + folic acid was able to improve the oocyte quality, the ratio between follicles and retrieved oocytes, the fertilization rate, and the embryo quality in PCOS patients undergoing IvF treatments. 29 patients with PCOS underwent IvF protocols for infertility treatment and were randomized prospectively into two groups. Group A (placebo) with 15 patients and group B (4000 mg myoinositol + 400 μg folic acid per day) with 14 patients. The patients of group B used for two months myoinositol + folic acid before starting the IvF protocol and data were obtained concerning number of follicles, number of oocytes, quality of oocytes, fertilization rates, and embryo quality in both groups. The ratio follicle/retrieved oocyte was better in the myoinositol group (= group B). Out of the 233 oocytes collected in the myoinositol group 136 were fertilized, whereas only 128 out of 300 oocytes in the placebo group were fertilized. More metaphase II and I oocytes were retrieved in relation to the total amount of oocytes in the myoinositol. More embryos of grade I quality were obtained in the myoinositol. The duration of stimulation was 9,7 days (±3,3) in the myoinositol group and 11,2 (±1,8) days in the placebo group and the number of used FSH units was lower in the myoinositol group: 1750 FSH units (mean) versus 1850 units (mean). Our evidence suggests that myoinositol therapy in women with PCOS results in better fertilization rates and a clear trend to a better embryo quality. As the number of retrieved oocytes was smaller in the myoinositol group, the risk of hyper stimulation syndrome can be reduced in these patients.


2014 ◽  
Vol 26 (1) ◽  
pp. 136
Author(s):  
T. Somfai ◽  
K. Kikuchi ◽  
K. Yoshioka ◽  
F. Tanihara ◽  
H. Kaneko ◽  
...  

Development to term of vitrified porcine follicular oocytes is reported in the present study. Immature cumulus-oocyte complexes (COC) were collected from slaughtered prepubertal gilts and were vitrified according to our method published recently (Somfai et al. 2013 J. Reprod. Dev., in press). Briefly, after pretreatment with 7.5 μg mL–1 of cytochalasin B (CB) for 30 min in modified NCSU-37 (a basic medium, BM) at 38.5°C, groups of 88 to 121 COC were equilibrated in a mixture of 2% ethylene glycol (EG), 2% propylene glycol (PG), and 7.5 μg mL–1 CB for 13 to 15 min. Then, COC were washed in vitrification solution (17.5% EG, 17.5% PG, 5% polyvinyl pyrrolidone, and 0.3 M trehalose in BM) and then dropped with 2 μL of vitrification solution onto the surface of aluminum foil floating on liquid nitrogen (LN2). Microdroplets (each containing 10–25 COC) were transferred into cryotubes. After storage in LN2 for 2 to 4 weeks, the oocytes were warmed by dropping the microdroplets directly into 2.5 mL of warming solution (0.4 M trehalose in BM) kept in a 35-mm Petri dish on a 42°C hotplate for less than 1 min. Then, the warming dish was placed on a 38°C hotplate and COC were consecutively transferred for 1-min periods into BM containing 0.2, 0.1, or 0.05 M trehalose at 38°C. The COC were matured in vitro for 44 h using porcine oocyte medium (POM) supplemented with 10% follicular fluid (Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213). Then, oocytes were denuded, and their live/dead status and nuclear maturation were determined by their morphology and the presence of the first polar body, respectively. To assess their developmental competence, vitrified and non-vitrified (control) oocytes were in vitro fertilized (IVF; Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041) and then in vitro cultured in porcine zygote medium-5 (PZM-5; Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213). Blastocyst rates were recorded on Days 5, 6, and 7 of culture (Day 0 = the day of IVF). The experiment was replicated 4 times. Data were analysed with 1-way ANOVA and the Tukey test. The results revealed that 86.4% (364/424) of oocytes survived after vitrification, which was significantly lower (P < 0.05) than that of controls [100% (326/326)]. Live oocytes in vitrified and control groups did not differ statistically in terms of nuclear maturation (63.9 v. 65.3%). Blastocyst rates of surviving vitrified oocytes were significantly lower compared with controls on Days 5 (2.4 v. 12.7%), 6 (4.8 v. 17.6%), and 7 (5.6 v. 18.4%). To test their ability to develop to term, 16 and 27 blastocysts on Day 5 developing from vitrified COC were transferred into 2 recipients. Both recipients became pregnant and farrowed a total of 10 live piglets (4 and 6 piglets, respectively). These data demonstrate that large groups of immature porcine oocytes could be cryopreserved by this method showing high survival and maturation rates. Furthermore, despite a low rate of blastocyst development, transfer of Day-5 blastocysts generated from vitrified oocytes resulted in piglet production for the first time in the world. Partially supported by JSPS and HAS under the Japan-Hungary Research Cooperative Program.


2008 ◽  
Vol 20 (1) ◽  
pp. 118
Author(s):  
B. Gajda ◽  
Z. Smorag ◽  
M. Bryla

It is possible to improve the success of cryopreservation of in vitro-produced bovine embryos by modifying the embryos with the metabolic regulator phenazine ethosulfate (PES) (Seidel 2006 Theriogenology 65, 228–235). The PES treatment increased glucose matabolism, tended to increase the pentose phosphate pathway flux of glucose, and clearly reduced accumulation of lipids in cultured bovine embryos (De La Torre-Sanchez et al. 2006 Reprod. Fertil. Dev. 18, 597–607). It is known that porcine embryos have a considerably high content of lipids, and the success rates of their cryopreservation appear to be highly correlated with cytoplasmic lipid content. In our preliminary study, we observed that supplementation of NCSU-23 medium with PES has a positive effect on efficiency of pig blastocysts of good quality (Gajda et al.. 2007 Acta Biochim. Pol. 54(Suppl 1), 52 abst). In the present study, the effects of PES on pig blastocyst development, apoptosis, and survival after vitrification were investigated. In Exp. 1, porcine zygotes obtained from superovulated gilts were cultured in NCSU-23 medium supplemented with 0 (control), 0.025, 0.05, or 0.075 µm PES. The culture was performed at 39�C, with 5% CO2 in air, for 96–120 h. Embryo quality criteria were developmental competence (cleavage, morula stage, and blastocyst stage), cell number per blastocyst, and the degree of apoptosis as assessed by TUNEL staining. In Exp. 2, expanded blastocysts cultured with 0.025 µm PES were vitrified in a ethylene glycol and dimethyl sulfoxide mixture using open pulled straw (OPS) technology (Vajta et al. 1997 Acta Vet. Scand. 38, 349–352). After thawing, the blastocysts were cultured in vitro for re-expansion or transferred to synchronized recipients. Data were analyzed by chi-square test. There was a difference between the 0.025 µm PES-treated and the control group in percentage of cleaved embryos (99.0 and 91.4%, respectively; P < 0.05), between all experimental groups and control in percentage of morula stage (90.7, 87.8, 83.8, and 80.0%, respectively), and between 0.025 and 0.05 µm PES-treated and control in percentage of blastocyst rates (70.0, 75.5, and 65.7%, respectively). The number of cells and percentage of TUNEL-positive nuclei per blastocyst were lower in the PES-treated than in the control group. The survival rate of blastocysts after vitrification and thawing was enhanced in the presence of PES compared to that in the PES-free group (45.2 and 38.9%, respectively; P < 0.05). After transfer of 56 expanded blastocysts cultured with PES and vitrified into 3 recipients, two gilts were confirmed pregnant at 35 days of gestation. In conclusion, a higher blastocyst percentage with a low incidence of apoptosis was obtained in the presence of PES compared to control. These blastocysts also had an increased ability to survive cryopreservation.


2007 ◽  
Vol 19 (1) ◽  
pp. 239 ◽  
Author(s):  
R. Krisher ◽  
A. Auer ◽  
K. Clark ◽  
K. Emsweller ◽  
S. Rogers ◽  
...  

The objective of this experiment was to develop in vitro embryo production (IVP) technologies in springbok (Antidorcas marsupialis), a southern African antelope. Springbok, a fairly common species on game farms in parts of South Africa, may be used as a model species for gamete rescue and IVP techniques to be applied to the conservation of other threatened antelope species. Springbok belong to the family bovidae, subfamily antilopinae, tribe antilopini, which comprises about twenty species in genera Gazella, Antilope, Procapra, Antidorcas, Litocranius, and Ammodorcas. In this tribe alone, there are 4 species or subspecies that are critically endangered, 3 that are endangered, and 10 that are considered vulnerable, demonstrating the need for antelope conservation efforts. In addition, our studies contributed to the South African biological resource bank, so that banked springbok semen and embryos might be used in the future for managed genetic contribution to isolated captive or wild populations via assisted reproductive technologies. Oocytes were recovered (3 replicates) from ovaries obtained at supervised culls for management purposes in South Africa, and cultured in defined Gmat or undefined TCM-199 with FCS maturation medium for 28-30 h (Brad et al. 2004 Reprod. Fertil. Dev. 16, 223). Oocytes were fertilized with frozen-thawed springbok epididymal spermatozoa in modified SOF fertilization medium with caffeine (Herrick et al. 2004 Biol. Reprod. 71, 948–958). Eighteen hours after insemination, a randomly selected subset of the zygotes were fixed to determine fertilization success. The remaining zygotes were cultured in G1/G2 media. On Day 7 of culture, embryos were analyzed for development to the morula or blastocyst stage. A total of 259 selected oocytes were collected from 50 females (5.2 selected oocytes/female on average). There was no difference in the percentage of oocytes normally fertilized (2 pronuclei, PN) between oocytes matured in Gmat (n= 43; 12%) and those matured in TCM-199 (n= 42; 10%). There were significantly (P &lt; 0.05) more oocytes penetrated (e2 PN) when matured in TCM (50%) compared to Gmat (23%). There were no differences in embryonic cleavage or morula/blastocyst development (of total oocytes inseminated) between treatments (Gmat,n= 89, 54%, 9.0%; TCM-199, n= 85, 68%, 9.4%, respectively). In both treatments, the average blastocyst grade was 2.125 using the standard bovine grading system (Curtis, Cattle Embryo Transfer Procedure, 1991). In conclusion, in vitro oocyte maturation, fertilization, and embryo culture to the blastocyst stage is possible in springbok. Importantly, blastocysts can be produced in vitro under semi-defined conditions, demonstrating that oocyte maturation without serum does support developmental competence. This is important for the potential international movement of IVP embryos to be used for genetic management in the conservation of antelope species.


Sign in / Sign up

Export Citation Format

Share Document