Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture

Zygote ◽  
2021 ◽  
pp. 1-9
Author(s):  
Chan Hee Lee ◽  
Min Kook Kang ◽  
Dong Hyun Sohn ◽  
Hye Min Kim ◽  
Juri Yang ◽  
...  

Summary Oxidative stress causes several diseases and dysfunctions in cells, including oocytes. Clearly, oxidative stress influences oocyte quality during in vitro maturation and fertilization. Here we tested the ability of coenzyme Q10 (CoQ10) to reduce reactive oxygen species (ROS) and improve mouse oocyte quality during in vitro culture. Treatment with 50 μM CoQ10 efficiently reduced ROS levels in oocytes cultured in vitro. The fertilizable form of an oocyte usually contains a cortical granule-free domain (CGFD). CoQ10 enhanced the ratio of CGFD–oocytes from 35% to 45%. However, the hardening of the zona pellucida in oocytes was not affected by CoQ10 treatment. The in vitro maturation capacity of oocytes, which was determined by the first polar body extrusion, was enhanced from 48.9% to 75.7% by the addition of CoQ10 to the culture medium. During the parthenogenesis process, the number of two-cell embryos was increased by CoQ10 from 43.5% to 67.3%. Additionally, treatment with CoQ10 increased the expression of Bcl2 and Sirt1 in cumulus cells. These results suggested that CoQ10 had a positive effect on ROS reduction, maturation rate and two-cell embryo formation in mouse oocyte culture.

2017 ◽  
Vol 3 (6) ◽  
pp. 166 ◽  
Author(s):  
Rini Widyastuti ◽  
Mas Rizky A.A. Syamsunarno ◽  
Takdir Saili ◽  
Arief Boediono

In vitro maturation is the crucial step for in vitro embryo production. It needs a large number of oocytes as source gamet cells recovered. The present study is aimed to assess the influence of corpus luteum on the average number oocytes harvested, COCs quality and subsequent maturation of immature oocytes recovered from sheep ovaries. Sheep ovaries were collected from local slaughterhouse and COCs were collected by using slicing method. Collected COCs were graded into three categories dependent upon cumulus cells surrounding them and the homogenous of cytoplasm. COCs were maturated in maturation media at 5% CO2 for 24 hours. Maturation of oocytes evaluated base on the expansion of cumulus cells and extrusion of the first polar body. There was significantly higher on average of COCs harvested from ovaries with corpus luteum compared without corpus luteum. The presence of Corpus luteum did not affect the COCs quality and ability to reach the maturation stage. However, there was a dramatic effect of cultured COCs quality on maturation rate both groups. Collectively, these results indicate that COCs quality is the main factor affecting the subsequent of oocytes matured in vitro. Keywords: Corpus luteum; cumulus oocyte complex; in vitro maturation; maturation rate; ovaries


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Yue-Liang Zheng ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 °C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p<0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p<0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p<0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p<0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p<0.05) among methods 1, 3 and 4, but method 2 produced a higher (p<0.05) blastocyst rate than method 3.


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


2010 ◽  
Vol 22 (1) ◽  
pp. 320
Author(s):  
K. C. Almeida ◽  
A. F. Pereira ◽  
A. S. Alcântara Neto ◽  
S. R. G. Avelar ◽  
F. C. Sousa ◽  
...  

Oocyte IVM is a long process during which oocytes acquire their ability to support the stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. The overall success of this process can be affected by factors such as hormonal treatment for ovarian stimulation. Thus, the current study aims to evaluate the possible effects of the ovarian stimulatory protocols on the goat oocyte quality and IVM rate. Adult and cyclic Canindé goats were heat-synchronized by means of intravaginal sponges impregnated with 60 mg medroxyprogesterone acetate (MAP, Progespon, Syntex, Buenos Aires, Argentina) inserted for 11 days coupled with a luteolytic injection of 50 μg cloprostenol (Ciosin, Coopers, São Paulo, Brazil) in the 8th day of treatment. The ovarian stimulation was carried out using one of the following protocols: a) standard multi-doses (MD) with 120 mg pFSH (Folltropin-V, Vetrepharm, Canada) distributed in five injections (30/30; 20/20; 20 mg) at 12 h intervals (n = 18); b) three- doses (TD) with 120 mg pFSH administered in three injections (60; 40; 20 mg) at 24 h intervals (n = 17); c) one shot (OD) of 70 mg pFSH plus 200 IU of eCG (Novormon, Syntex) administered 36 h before sponge removal (n = 17). In MD andTD groups, the pFSH injections started in Day 8 of progestagen treatment. The follicles were aspirated just after the sponge removal using laparoscopic oocyte recovery (LOR). This procedure was performed with a 22-gauge needle and a vacuum pump at 30 mmHg. The collection medium was TCM-199 supplemented with HEPES (10 mM), heparin (20 IU mL-1), and gentamicin sulfate (40 μg mL-1). COCs were classified as grade I, II, III, or IV based on visual criteria (Baldassarre H et al. 2003 Theriogenology 56, 831-839). Good quality oocytes (grade I and II) were incubated in TCM-199 supplemented with cysteamine (100 μM), EGF (10 ng mL-1) and gentamicin sulfate (40 μgm L-1) at 38.5°C in a humidified atmosphere with 5% CO2 in air for 24 h. Oocyte maturation was assessed by the visualization of first polar body under inverted microscope. Data were expressed as percentages and analyzed using the Fischer’s exact test. No statistical differences among hormonal treatments (P > 0.05) were observed for the percentage of the good quality oocytes, with 70.4 ± 3.0% of COCs graded in I and II. The IVM rate inTD (31.4%) was statistically lower than MD (31.4% v. 46.5%, P = 0.04) group. However, no significant differences (P = 0.89) were observed between OD (45.2%) and MD groups. Thus, current results indicate that oocyte production for IVM can be facilitated using ovarian stimulation with the one shot FSH/eCG regime without affecting meiotic competence. In summary, OD and MD treatments can be used for oocyte IVM in an embryo production programme in Canindé goats. This study was supported by the following Brazilian agencies: FINEP, CNPq, FUNCAP, and CAPES.


Reproduction ◽  
2002 ◽  
pp. 455-465 ◽  
Author(s):  
YH Choi ◽  
CC Love ◽  
LB Love ◽  
DD Varner ◽  
S Brinsko ◽  
...  

This study was undertaken to evaluate the development of equine oocytes in vitro and in vivo after intracytoplasmic sperm injection (ICSI) with either fresh or frozen-thawed spermatozoa, without the use of additional activation treatments. Oocytes were collected from ovaries obtained from an abattoir and oocytes classified as having expanded cumulus cells were matured in M199 with 10% fetal bovine serum and 5 microU FSH ml(-1). After 24-26 h of in vitro maturation, oocytes with a first polar body were selected for manipulation. Fresh ejaculated stallion spermatozoa were used for the experiment after swim-up for 20 min in sperm-Tyrode's albumen lactate pyruvate. Frozen-thawed spermatozoa from the same stallion were treated in a similar way. Spermatozoa were immobilized and injected into the oocytes using a Piezo drill. Presumptive zygotes were cultured in G1.2 medium for 20 or 96 h after the injection was administered, or were transferred to the oviducts of recipient mares and recovered 96 h later. In addition, bovine oocytes with first polar bodies were injected with the two types of stallion spermatozoa and fixed 20 h after injection to examine pronuclear formation. Fertilization rate (pronucleus formation and cleavage) at 20 h after injection of spermatozoa was not significantly different between fresh and frozen-thawed sperm groups in either equine or bovine oocytes. Pronucleus formation after injection of spermatozoa into bovine oocytes was significantly higher than that for equine oocytes (P < 0.05). There were no significant differences in cleavage rate or average number of nuclei at 96 h between equine oocytes injected with fresh or frozen-thawed spermatozoa. However, embryos developed in vivo for 96 h had a significantly higher number of nuclei in both sperm treatments compared with those cultured in vitro. These results indicate that good activation rates may be obtained after injection of either fresh or frozen-thawed equine spermatozoa without additional activation treatment. Injection of frozen-thawed equine spermatozoa results in similar embryo development to that obtained with fresh equine spermatozoa. In vitro culture of equine zygotes in G1.2 medium results in a similar cleavage rate but reduced number of cells compared with in vivo culture within the oviduct. Bovine oocytes may be useful as models for assessing sperm function in horses.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 841
Author(s):  
Wenhui Li ◽  
Yijing He ◽  
Hongyu Zhao ◽  
Lei Peng ◽  
Jia Li ◽  
...  

Fumonisin B1 (FB1), as the most prevalent and toxic fumonisin, poses a health threat to humans and animals. The cytotoxicity of FB1 is closely related to oxidative stress and apoptosis. The purpose of this study is to explore whether Grape seed proanthocyanidin (GSP), a natural antioxidant, could alleviate the meiotic maturation defects of oocytes caused by FB1 exposure. Porcine cumulus oocyte complexes (COCs) were treated with 30 μM FB1 alone or cotreated with 100, 200 and 300 μM GSP during in vitro maturation for 44 h. The results show that 200 μM GSP cotreatment observably ameliorated the toxic effects of FB1 exposure, showing to be promoting first polar body extrusion and improving the subsequent cleavage rate and blastocyst development rate. Moreover, 200 μM GSP cotreatment restored cell cycle progression, reduced the proportion of aberrant spindles, improved actin distribution and protected mitochondrial function in FB1-exposed oocytes. Furthermore, reactive oxygen species (ROS) generation was significantly decreased and the mRNA levels of CAT, SOD2 and GSH-PX were obviously increased in the 200 μM GSP cotreatment group. Notably, the incidence of early apoptosis and autophagy level were also significantly decreased after GSP cotreatment and the mRNA expression levels of BAX, CASPASE3, LC3 and ATG5 were markedly decreased, whereas BCL2 and mTOR were observably increased in the oocytes after GSP cotreatment. Together, these results indicate that GSP could exert significant preventive effects on FB1-induced oocyte defects by ameliorating oxidative stress through repairing mitochondrial dysfunction.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Pan Yuan ◽  
Li Zhou ◽  
Xiaona Zhang ◽  
Lan Yao ◽  
Jun Ning ◽  
...  

Abstract Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6346
Author(s):  
Benazir Abbasi ◽  
Yan Dong ◽  
Rong Rui

Postovulatory aging of the mammalian oocytes causes deterioration of oocytes through several factors including oxidative stress. Keeping that in mind, we aimed to investigate the potential of a well-known antioxidant, resveratrol (RV), to evaluate the adverse effects of postovulatory aging in porcine oocytes. After in vitro maturation (IVM), a group of (25–30) oocytes (in three replicates) were exposed to 0, 1, 2, and 4 μmol/L of RV, respectively. The results revealed that the first polar body (PB1) extrusion rate of the oocytes significantly increased when the RV concentration reached up to 2 μmol/L (p < 0.05). Considering optimum RV concentration of 2 μmol/L, the potential of RV was evaluated in oocytes aged for 24 and 48 h. We used fluorescence microscopy to detect the relative level of reactive oxygen species (ROS), while GHS contents were measured through the enzymatic method. Our results revealed that aged groups (24 h and 48 h) treated with RV (2 μmol/L) showed higher (p < 0.05) ROS fluorescence intensity than the control group, but lower (p < 0.05) than untreated aged groups. The GSH content in untreated aged groups (24 h and 48 h) was lower (p < 0.05) than RV-treated groups, but both groups showed higher levels than the control. Similarly, the relative expression of the genes involved in antioxidant activity (CAT, GPXGSH-Px, and SOD1) in RV-treated groups was lower (p < 0.05) as compared to the control group but higher than that of untreated aged groups. Moreover, the relative mRNA expression of caspase-3 and Bax in RV-treated groups was higher (p < 0.05) than the control group but lower than untreated groups. Furthermore, the expression of Bcl-2 in the RV-treated group was significantly lower than control but higher than untreated aged groups. Taken together, our findings revealed that the RV can increase the expression of antioxidant genes by decreasing the level of ROS, and its potent antiapoptotic effects resisted against the decline in mitochondrial membrane potential in aged oocytes.


Author(s):  
Lin Meng ◽  
Hongmei Hu ◽  
Zhiqiang Liu ◽  
Luyao Zhang ◽  
Qingrui Zhuan ◽  
...  

[Ca2+]i is essential for mammalian oocyte maturation and early embryonic development, as those processes are Ca2+ dependent. In the present study, we investigated the effect of [Ca2+]i on in vitro maturation and reprogramming of oocytes in a lower calcium model of oocyte at metaphase II (MII) stage, which was established by adding cell-permeant Ca2+ chelator BAPTA-AM to the maturation medium. Results showed that the extrusion of the first polar body (PB1) was delayed, and oocyte cytoplasmic maturation, including mitochondrial and endoplasmic reticulum distribution, was impaired in lower calcium model. The low-calcium-model oocytes presented a poor developmental phenotype of somatic cell nuclear transfer (SCNT) embryos at the beginning of activation of zygotic genome. At the same time, oxidative stress and apoptosis were observed in the low-calcium-model oocytes; subsequently, an RNA-seq analysis of the lower-calcium-model oocytes screened 24 genes responsible for the poor oocyte reprogramming, and six genes (ID1, SOX2, DPPA3, ASF1A, MSL3, and KDM6B) were identified by quantitative PCR. Analyzing the expression of these genes is helpful to elucidate the mechanisms of [Ca2+]i regulating oocyte reprogramming. The most significant difference gene in this enriched item was ID1. Our results showed that the low calcium might give rise to oxidative stress and apoptosis, resulting in impaired maturation of bovine oocytes and possibly affecting subsequent reprogramming ability through the reduction of ID1.


Sign in / Sign up

Export Citation Format

Share Document