Clinical implications of mitral valve geometric alterations in children with dilated cardiomyopathy

2015 ◽  
Vol 26 (7) ◽  
pp. 1365-1372 ◽  
Author(s):  
Taiyu Hayashi ◽  
Ryo Inuzuka ◽  
Takahiro Shindo ◽  
Hiroshi Ono ◽  
Yukihiro Kaneko ◽  
...  

AbstractWe aimed to elucidate the relationship between severity of secondary mitral regurgitation and mitral valve geometry in children with dilated cardiomyopathy. The medical records of 16 children with dilated cardiomyopathy (median age, 1.2 years; range, 0.4–12.3 years) were reviewed. Mitral valve geometry was evaluated by measuring coaptation depth using echocardiographic apical four-chamber views at the initial presentation. Patients were dichotomised according to the mitral regurgitation severity: patients with moderate or severe secondary mitral regurgitation (n=6) and those with mild secondary mitral regurgitation (n=10). A total of 58 healthy children were considered as normal controls, and a regression equation to predict coaptation depth by body surface area was derived: coaptation depth [mm]=4.37+1.34×ln (body surface area [m2]) (residual standard error, 0.49; adjusted R2, 0.68; p<0.0001). Compared with patients with mild secondary mitral regurgitation, those with moderate or severe secondary mitral regurgitation had significantly larger coaptation depth z-scores (6.4±2.3 versus 1.9±1.4, p<0.005), larger mitral annulus diameter z-scores (3.6±2.6 versus 0.9±1.8, p<0.05), higher left ventricular sphericity index (0.89±0.07 versus 0.79±0.06, p<0.005), and greater left ventricular fraction shortening (0.15±0.05 versus 0.09±0.05, p<0.05). In conclusion, geometric alteration in the mitral valve and the left ventricle is associated with the severity of secondary mitral regurgitation in paediatric dilated cardiomyopathy, which would provide a theoretical background to surgical intervention for secondary mitral regurgitation in paediatric populations.

2004 ◽  
Vol 14 (5) ◽  
pp. 494-497 ◽  
Author(s):  
Robert F. English ◽  
Jose A. Ettedgui

The Amplatzer septal occluder is an alternative to operative closure of atrial septal defects within the oval fossa. An issue when deploying the device is its distance from the mitral valve. The purpose of this study is to determine how this distance changes with growth of the patient. We identified, through a review of charts, all patients undergoing closure of defects within the oval fossa by insertion of an Amplatzer septal occluder. Data were obtained from the echocardiogram 24 hours after closure, and at most recent follow-up, including left ventricular end-diastolic diameter, left atrial diameter, degree of mitral valvar regurgitation, body surface area, and distance from the device to the mitral valve. We divided the patients into 2 groups based upon change in body surface area. The first group had an increase in body surface area of at least 10%. All others were in the second group.We inserted 55 Amplatzer septal occluders in 54 patients. Of these we excluded 17 patients, 1 because quality of images was inadequate, 1 who underwent placement of 2 devices, 1 in whom the device embolised to the left ventricle the day after deployment, and 14 who have not yet had a follow-up echocardiogram.The group which exhibited an increase in body surface area of greater than 10% demonstrated an increase in distance from the device to the mitral valve, left ventricular end-diastolic, and left atrial diameters. Those who did not undergo significant growth had no increase in distance from the device to the mitral valve, but did have an increase in left atrial and left ventricular end-diastolic diameters. No patient developed mitral regurgitation. We conclude that, when deploying an Amplatzer septal occluder close to the mitral valve in children, the distance from the device to the mitral valve can be expected to increase with growth of the patient.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
David A McNamara ◽  
Ari Bennett ◽  
Jarett D Berry ◽  
Mark S Link

Introduction: Recent studies have shown an association between early repolarization pattern (ERP) ECG morphology and sudden cardiac death. The role of left ventricular mass (LVM) as a potential mediator of ERP has not been well explored. Methods: Participants in the Dallas Heart Study who underwent an ECG and cardiac MRI (CMR) were assessed for ERP, defined as J-point elevation ≥1 mm in any 2 contiguous leads. We compared participants with and without ERP by age, gender, race/ethnicity, established cardiovascular risk factors of diabetes, hypertension and hyperlipidemia, lean body mass and percent body fat, and CMR-derived LVM, LVM/body surface area, and LVH defined by standard criteria, using Student’s T-tests and chi-squared tests where appropriate. Results: Of the 3,015 participants in our study, 276 (9.2%) had ERP. Participants with ERP were younger (43±9 vs 44±10 yrs, p=0.04), more prevalent in blacks than non-blacks (14 vs 5.0%, p<0.00001), and in men than women (18 vs 2.0%, p<0.00001). Baseline cardiovascular risk factors were not significantly different. Participants with ERP demonstrated higher lean body mass (59±10 vs 52±11 kg, p<0.00001) and lower percent body fat (27±8 vs 36±9%, p<0.00001). The presence of ERP was associated with greater LVM, increased LVM/body surface area, and the presence of LVH in the overall population and in analyses stratified by sex (Table 1). Conclusion: In a large, multi-ethnic cohort, ERP is associated with increased total LVM, increased LVM/body surface area, and LVH. These novel associations may provide insight into the biology of ERP. Further studies investigating the relationship of LVM and LVH with ERP are warranted.


Hypertension ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 514-522 ◽  
Author(s):  
Coral Garcia-Gonzalez ◽  
Georgios Georgiopoulos ◽  
Samira Abdel Azim ◽  
Fernando Macaya ◽  
Nikos Kametas ◽  
...  

Preeclampsia at term accounts for half of maternal deaths from hypertensive disorders. We aimed to assess differences in maternal cardiac indices at 35 +0 to 36 +6 weeks’ gestation between women who subsequently developed preeclampsia at term compared with those with uncomplicated pregnancy and to evaluate whether cardiac indices offer incremental prognostic value to the available screening algorithm for preeclampsia. We recruited 1602 women with singleton pregnancies who attended for a routine hospital visit at 35 +0 to 36 +6 weeks’ gestation between April and November 2018. We recorded maternal characteristics and preeclampsia-risk-score derived from a competing risks model and measured cardiac indices. Preeclampsia developed in 3.12% (50/1602) of participants. Women with preeclampsia, compared with those without, had increased mean arterial pressure (97.6, SD, 5.53 versus 87.9, SD, 6.82 mm Hg), systemic vascular resistance (1500, interquartile range, 1393–1831 versus 1400, interquartile range, 1202–1630 PRU) and preeclampsia-risk-score (23.4, interquartile range, 9.13–40 versus 0.9, interquartile range, 0.32–3.25). Multivariable analysis demonstrated independent association between the incidence of preeclampsia and E/e′ (hazard ratio, 1.19/unit [95% CI, 1.03–1.37]; P =0.018) as well as left ventricular mass indexed for body surface area (hazard ratio, 1.03/[g·m 2 ] [95% CI, 1.003–1.051]; P =0.029). Women with E/e′ ≥7.3 and left ventricular mass indexed for body surface area ≥63.2 g/m 2 had an increased risk for developing preeclampsia, despite low preeclampsia-risk-score <5% (hazard ratio, 20.1 [95% CI, 10.5–38.7], P <0.001). Increased left ventricular mass and E/e′ offer incremental information to available scoring systems and better stratify women at risk of developing preeclampsia at term.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
T Miyoshi ◽  
K Addetia ◽  
A Blitz ◽  
R Lang ◽  
F Asch

Abstract Funding Acknowledgements WASE Normal Values Study is sponsored by American Society Echocardiography Foundation. OnBehalf the WASE Investigators Background The American Society of Echocardiography (ASE) and the European Association of Cardiovascular Imaging (EACVI) chamber quantification guidelines provide normal reference values for a variety of size and function parameters. While used worldwide, these were predominantly obtained from American and European Caucasian populations and may not represent individuals from other regions around the world. Accordingly, ASE in collaboration with its International Alliance Partners conducted the World Alliance of Societies of Echocardiography (WASE) Normal Values Study to establish and compare normal echocardiographic values across races, ethnicities and countries worldwide. While most previous studies focused on left ventricular (LV) size and ejection fraction, LV stroke volume (SV) in healthy normal subjects has not been well defined. In this report, we aim to examine similarities and differences in normal LV SV indexed by body surface area (SVI) among regions around the world. Methods WASE Normal Values Study is a multinational, observational, cross-sectional study. Individuals free from known cardiac, lung and renal disease were prospectively enrolled with even distribution among age groups and gender. Echocardiographic images were acquired following a standardized protocol. LV SV was assessed by Doppler-derived (LVOT diameter and VTI) and two-dimensional (2D) biplane Simpson’s methods. LV SVI was calculated to account for differences in body size. These measurements were analyzed (TOMTEC) in a single core laboratory following ASE/EACVI Guidelines. Results As of May 2019, LV SV has been analyzed in 1164 cases from 13 countries, representing 8 distinct regions worldwide. In this population, age, body surface area and 2D LV ejection fraction were 47 ± 17 years old (range 18-87 years old), 1.76 ± 0.22 m² (range 0.95-2.44 m²) and 63.2 ± 2.9 % (range 52.7-73.7 %), respectively. LV SV and SVI by Doppler were larger than those obtained by 2D method in all regions. LV SV and SVI in both methods had significant differences among regions (p&lt; 0.0001, Kruskal-Wallis test). LV SV and SVI in South Asia (India) were smallest in both methods and were also significantly smaller than other Asian regions (Figure). North America and Europe had largest LV SV and SVI by Doppler method, while Oceania had largest values by 2D. Conclusions The WASE Normal Values Study shows geographical variability in LV SVI across continents and countries. This information should be considered when determining normative values for SV and SVI. Abstract P1766 Figure.


Sign in / Sign up

Export Citation Format

Share Document