scholarly journals 47. Comparison of Devices Used While Ventilating a Non-Intubated Mannikin Model

1996 ◽  
Vol 11 (S2) ◽  
pp. S43-S43
Author(s):  
Glenn Updike ◽  
Vince Mosesso ◽  
Tom Auble

Purpose: The purpose of this study was to determine if there were differences in tidal volume (Vt), minute volume (MV), average mask leak per breath (ML), gastric insufflation (GI), and peak airway pressure (PAP) when ventilating a non-intubated mannikin with a bag-valve (BV), manually triggered ventilator (MTV) and automated ventilator (AV). Our hypothesis was that there would be no differences among devices for any of these variables.Methods: This was a prospective in vitro experimental model. A convenience sample of 19 emergency medical technicians (EMTs) ventilated a non-intubated mannikin-mechanical test lung model with BV, MTV (flow rate 40 L/min; pressure relief 55 cm H2O), and AV (800 ml/breath; rate 12). Each subject, blinded to volume and pressure gauges, used each device for two minutes at both normal (0.1 cm H2O) and poor (0.04 cm H2O) compliances. Vt, MV, GI, and PAP were measured directly and ML was calculated. Data were analyzed with repeated measures ANOVA and Bonferoni-Dunn multiple comparison test with alpha set at 0.05.

2006 ◽  
Vol 104 (6) ◽  
pp. 1202-1207 ◽  
Author(s):  
Vasilia G. Nyktari ◽  
Alexandra A. Papaioannou ◽  
George Prinianakis ◽  
Eytichis G. Mamidakis ◽  
Dimitris Georgopoulos ◽  
...  

Background Airway resistance depends not only on an airway's geometry but also on flow rate, and gas density and viscosity. A recent study showed that at clinically relevant concentrations, the mixtures of volatile agents with air and oxygen and oxygen-nitrogen affected the density of the mixture. The goal of the current study was to investigate the effect of different minimum alveolar concentrations (MACs) of three commonly used volatile agents, isoflurane, sevoflurane, and desflurane, on the measurements of airway resistance. Methods A two-chamber fixed-resistance test lung was connected to an anesthesia machine using the volume control mode of ventilation. Pulmonary resistance was calculated at baseline (25% oxygen in air); at 1.0, 1.5, and 2.0 MAC; and also at the same concentrations, 1.2% and 4%, of isoflurane, sevoflurane, and desflurane mixtures with 25% oxygen in air. The analysis of variance test for repeated measures and probabilities for post hoc Tukey and least significant difference tests were used. Results Isoflurane affected pulmonary resistance only at 2 MAC. Sevoflurane caused a significant increase of pulmonary resistance at 1.5 and 2 MAC, whereas desflurane caused the greatest increase in pulmonary resistance at all MAC values used. At 1.2% concentration, no difference from the baseline resistance was observed, whereas at 4%, the three agents produced similar increases of pulmonary resistance. Conclusion High concentrations of volatile agents in 25% oxygen in air increased the density of the gas mixture and the calculated resistance of a test lung model with fixed resistance.


Author(s):  
Martin Bellgardt ◽  
Dominik Drees ◽  
Vladimir Vinnikov ◽  
Adrian I. Georgevici ◽  
Livia Procopiuc ◽  
...  

AbstractTo identify the better volatile anaesthetic delivery system in an intensive care setting, we compared the circle breathing system and two models of reflection systems (AnaConDa™ with a dead space of 100 ml (ACD-100) or 50 ml (ACD-50)). These systems were analysed for the parameters like wash-in, consumption, and wash-out of isoflurane and sevoflurane utilising a test lung model. The test lung was connected to a respirator (circle breathing system: Aisys CS™; ACD-100/50: Puriton Bennett 840). Set parameters were volume-controlled mode, tidal volume-500 ml, respiratory rate-10/min, inspiration time-2 sec, PEEP-5 mbar, and oxygen-21%. Wash-in, consumption, and wash-out were investigated at fresh gas flows of 0.5, 1.0, 2.5, and 5.0 l/min. Anaesthetic target concentrations were 0.5, 1.0, 1.5, 2.0, and 2.5%.  Wash-in was slower in ACD-100/-50 compared to the circle breathing system, except for fresh gas flows of 0.5 and 1.0 l/min. The consumption of isoflurane and sevoflurane in ACD-100 and ACD-50 corresponded to the fresh gas flow of 0.5-1.0 l/min in the circle breathing system. Consumption with ACD-50 was higher in comparison to ACD-100, especially at gas concentrations > 1.5%. Wash-out was quicker in ACD-100/-50 than in the circle breathing system at a fresh gas flow of 0.5 l/min, however, it was longer at all the other flow rates. Wash-out was comparable in ACD-100 and ACD-50. Wash-in and wash-out were generally quicker with the circle breathing system than in ACD-100/-50. However, consumption at 0.5 minimum alveolar concentration was comparable at flows of 0.5 and 1.0 l/min.


Author(s):  
Marzieh Alikhasi ◽  
Narges Ameri ◽  
Hakimeh Siadat ◽  
Ahmad Reza Shamshiri ◽  
Mohammadreza Nejati

Objectives: Internal fit of implant frameworks is an important factor determining the long-term success of dental implant restorations. This in-vitro study aimed to evaluate dimensional changes of implant-supported zirconia frameworks fabricated by two computer-aided design/computer-aided manufacturing (CAD/CAM) systems from scanning to sintering. Materials and Methods: A master model of a three-unit fixed partial denture was fabricated with two implant abutments. In each CAD/CAM system (AmannGirrbach and Zirkonzahn), the master model was scanned 12 times, and data were saved as Standard Transformation Language files (scanning groups). Using semi-sintered zirconia, 12 real-size frameworks (milling groups) and 12 enlarged frameworks, were sintered (sintering groups) and made by each system. Dimensions of the master model and frameworks in each phase were measured. Dimensional changes (compared to the master model) were calculated. Data were analyzed using repeated measures analysis of variance, independent t-test, and paired sample t-test (α=0.05). Results: Comparison of the two systems revealed that although dimensional changes were greater in the milling phase of Zirkonzahn, they were larger in the sintering phase of the AmannGirrbach system. Evaluation of fabrication phases revealed greater dimensional changes in the milling phase compared to the other phases in the Zirkonzahn system (P<0.05). However, in the AmannGirrbach system, the values were not significantly different between milling and sintering phases (P>0.05). Conclusion: Within the limitations of this study, the results showed that fabrication phases, CAD/CAM system type and abutment size had significant effects on dimensional changes.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Junya Saeki ◽  
Soichiro Iwanuma ◽  
Suguru Torii

The structure of the first toe is independent of that of the other toes, while the functional difference remains unclear. The purpose of this study was to investigate the difference in the force generation characteristics between the plantar-flexion of the first and second–fifth metatarsophalangeal joints (MTPJs) by comparing the maximal voluntary plantar-flexion torques (MVC torque) at different MTPJs and ankle positions. The MVC torques of the first and second–fifth MTPJs were measured at 0°, 15°, 30°, and 45° dorsiflexed positions of the MTPJs, and at 20° plantar-flexed, neutral, and 20° dorsiflexed positions of the ankle. Two-way repeated measures analyses of variance with Holm’s multiple comparison test (MTPJ position × ankle position) were performed. When the MTPJ was dorsiflexed at 0°, 15°, and 30°, the MVC torque of the first MTPJ when the ankle was dorsiflexed at 20° was higher than that when the ankle was plantar-flexed at 20°. However, the ankle position had no significant effect on the MVC torque of the second–fifth MTPJ. Thus, the MVC torque of the first MTPJ was more affected by the ankle position than the second–fifth MTPJs.


2021 ◽  
Vol 10 (5) ◽  
pp. 1070 ◽  
Author(s):  
Alexey Unkovskiy ◽  
Franziska Schmidt ◽  
Florian Beuer ◽  
Ping Li ◽  
Sebastian Spintzyk ◽  
...  

The topical literature lacks any comparison between stereolithography (SLA) and direct light processing (DLP) printing methods with regard to the accuracy of complete denture base fabrication, thereby utilizing materials certified for this purpose. In order to investigate this aspect, 15 denture bases were printed with SLA and DLP methods using three build angles: 0°, 45° and 90°. The dentures were digitalized using a laboratory scanner (D2000, 3Shape) and analyzed in analyzing software (Geomagic Control X, 3D systems). Differences between 3D datasets were measured using the root mean square (RMS) value for trueness and precision and mean and maximum deviations were obtained for each denture base. The data were statistically analyzed using two-way ANOVA and Tukey’s multiple comparison test. A heat map was generated to display the locations of the deviations within the intaglio surface. The overall tendency indicated that SLA denture bases had significantly higher trueness for most build angles compared to DLP (p < 0.001). The 90° build angle may provide the best trueness for both SLA and DLP. With regard to precision, statistically significant differences were found in the build angles only. Higher precision was revealed in the DLP angle of 0° in comparison to the 45° and 90° angles.


2021 ◽  
Vol 3 (1) ◽  
pp. e000084
Author(s):  
Amanda Farah Khan ◽  
Matthew Kenneth MacDonald ◽  
Catherine Streutker ◽  
Corwyn Rowsell ◽  
James Drake ◽  
...  

ObjectivesWe aim to determine what threshold of compressive stress small bowel and colon tissues display evidence of significant tissue trauma during laparoscopic surgery.DesignThis study included 10 small bowel and 10 colon samples from patients undergoing routine gastrointestinal surgery. Each sample was compressed with pressures ranging from 100 kPa to 600 kPa. Two pathologists who were blinded to all study conditions, performed a histological analysis of the tissues. Experimentation: November 2018–February 2019. Analysis: March 2019–May 2020.SettingAn inner-city trauma and ambulatory hospital with a 40-bed inpatient general surgery unit with a diverse patient population.ParticipantsPatients were eligible if their surgery procured healthy tissue margins for experimentation (a convenience sample). 26 patient samples were procured; 6 samples were unusable. 10 colon and 10 small bowel samples were tested for a total of 120 experimental cases. No patients withdrew their consent.InterventionsA novel device was created to induce compressive “grasps” to simulate those of a laparoscopic grasper. Experimentation was performed ex-vivo, in-vitro. Grasp conditions of 0–600 kPa for a duration of 10 s were used.ResultsSmall bowel (10), M:F was 7:3, average age was 54.3 years. Colon (10), M:F was 1:1, average age was 65.2 years. All 20 patients experienced a significant difference (p<0.05) in serosal thickness post-compression at both 500 and 600 kPa for both tissue types. A logistic regression analysis with a sensitivity of 100% and a specificity of 84.6% on a test set of data predicts a safety threshold of 329–330 kPa.ConclusionsA threshold was discovered that corresponded to both significant serosal thickness change and a positive histological trauma score rating. This “force limit” could be used in novel sensorized laparoscopic tools to avoid intraoperative tissue injury.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
A. Hamlekhan ◽  
M. Mozafari ◽  
N. Nezafati ◽  
M. Azami ◽  
H. Hadipour

In this study, poly(∊-caprolactone) (PCL), gelatin (GEL) and nanocrystalline hydroxyapatite (HAp) was applied to fabricate novel PCL-GEL-HAp nanaocomposite scaffolds through a new fabrication method. With the aim of finding the best fabrication method, after testing different methods and solvents, the best method and solvents were found, and the nanocomposites were prepared through layer solvent casting combined with freeze-drying. Acetone and distillated water were used as the PCL and GEL solvents, respectively. The mechanical test showed that the increasing of the PCL weight through the scaffolds caused the improvement of the final nanocomposite mechanical behavior due to the increasing of the ultimate stress, stiffness and elastic modulus (8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL). The biomineralization investigation of the scaffolds revealed the formation of bone-like apatite layers after immersion in simulated body fluid (SBF). In addition, the in vitro cytotoxity of the scaffolds using L929 mouse fibroblast cell line (ATCC) indicated no sign of toxicity. These results indicated that the fabricated scaffold possesses the prerequisites for bone tissue engineering applications.


2004 ◽  
Vol 32 (Supplement) ◽  
pp. A38
Author(s):  
Faera L Byerly ◽  
Bruce A Cairns ◽  
Kathy A Short ◽  
John A Haithcock ◽  
Lynn Shapiro ◽  
...  

2008 ◽  
Vol 52 (10) ◽  
pp. 3492-3496 ◽  
Author(s):  
W. A. Craig ◽  
D. R. Andes

ABSTRACT Ceftobiprole medocaril is the parenteral prodrug of ceftobiprole, a novel pyrrolidinone broad-spectrum cephalosporin with in vitro and in vivo bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP). We have used murine thigh and lung infection models in neutropenic and normal mice to characterize the in vivo pharmacokinetic (PK)-pharmacodynamic (PD) activities of ceftobiprole against multiple strains of S. aureus (including MRSA), S. pneumoniae (including PRSP), and gram-negative bacilli. Serum levels of ceftobiprole following the administration of multiple doses were determined by a microbiological assay. In vivo bactericidal activities and postantibiotic effects (PAEs) of ceftobiprole against MRSA and PRSP strains were determined from serial CFU/thigh values following single doses of ceftobiprole (40 and 160 mg/kg of body weight). Dose fractionation studies were used to determine which PK-PD index correlated best with activity. Magnitudes of the PK-PD indices were calculated from MICs and PK parameters. A sigmoid dose-response model was used to estimate the dose (mg/kg/24 h) required to achieve a static and 2-log10 kill effects over 24 h. PK results showed area under the concentration-time curve/dose values of 1.8 to 2.8 and half-lives of 0.29 to 0.51 h. MICs ranged from 0.015 to 2 μg/ml. Ceftobiprole demonstrated time-dependent killing; its in vivo PAEs varied from 3.8 h to 4.8 h for MRSA and from 0 to 0.8 h for PRSP. The time above MIC (T > MIC) correlated best with efficacy for both MRSA and PRSP. The T > MIC values required for the static doses were significantly longer (P < 0.001) for Enterobacteriaceae (36 to 45%) than for S. aureus (14 to 28%) and S. pneumoniae (15 to 22%). The drug showed activities in the lung model similar to those in the thigh model. The presence of neutrophils significantly enhanced the activity of ceftobiprole against S. pneumoniae but only slightly against Klebsiella pneumoniae. Based on its PD profile, ceftobiprole is a promising new β-lactam agent with activity against gram-negative and gram-positive organisms including MRSA and PRSP.


2000 ◽  
Vol 28 (5) ◽  
pp. A438-A438
Author(s):  
K. Ridd ◽  
D. J. Alexander ◽  
C. J. Reed

Sign in / Sign up

Export Citation Format

Share Document