Near Infrared Mapping of Jets and Outflow Cavities Associated with Young Stellar Objects

1993 ◽  
Vol 10 (3) ◽  
pp. 203-207 ◽  
Author(s):  
W.J. Zealey ◽  
M.G. Suters ◽  
P.R. Randall

AbstractOur current understanding of Herbig-Haro objects and their relationship with outflows and Pre-Main-Sequence objects is limited. Although the general mechanism of outflows is understood, the detailed questions concerning the outflowing material’s origin and the collimation mechanisms remain largely unanswered. The role of multi-waveband observations (visible, infrared and radio) is vital to our understanding of the shock dynamics of outflows.This paper discusses high spatial resolution near infrared maps of three outflow complexes, HH34, HH46/HH47 and HH54, made using the Anglo Australian Observatory’s infrared camera, IRIS. For the first time molecular hydrogen emission is observed associated with the edges of outflow cavities. In the cases of HH46/47 and to a lesser extent HH34 molecular emission is seen coincident with highly collimated jets feeding the outflow cavities.

2006 ◽  
Vol 2 (S237) ◽  
pp. 458-458
Author(s):  
Devendra Ojha ◽  
Motohide Tamura ◽  

AbstractWe have conducted deep near-infrared surveys of the Sh-2 255, W3 Main and NGC 7538 massive star forming regions using simultaneous observations of the JHKs-band with the near-infrared camera SIRIUS on the UH 88-inch telescope and with SUBARU. The near-infrared surveys cover a total area of ~ 72 arcmin2 of three regions with 10-σ limiting magnitudes of ~ 19.5, 18.4 and 17.3 in J, H and Ks-band, respectively. Based on the color-color and color-magnitude diagrams and their clustering properties, the candidate young stellar objects are identified and their luminosity functions are constructed in Sh-2 255, W3 Main and NGC 7538 star forming regions. A large number of previously unreported red sources (H-K > 2) have also been detected around these regions. We argue that these red stars are most probably pre-main-sequence stars with intrinsic color excesses. The detected young stellar objects show a clear clustering pattern in each region: the Class I-like sources are mostly clustered in molecular cloud region, while the Class II-like sources are in or around more evolved optical HII regions. We find that the slopes of the Ks-band luminosity functions of Sh-2 255, W3 Main and NGC 7538 are lower than the typical values reported for the young embedded clusters, and their stellar populations are primarily composed of low mass pre-main-sequence stars. From the slopes of the Ks-band luminosity functions, we infer that Sh-2 255, W3 Main and NGC 7538 star forming regions are rather young (age ≤ 1 Myr).


2008 ◽  
Vol 4 (S256) ◽  
pp. 233-238
Author(s):  
Takashi Shimonishi ◽  
Takashi Onaka ◽  
Daisuke Kato ◽  
Itsuki Sakon ◽  
Yoshifusa Ita ◽  
...  

AbstractWe present the first results of the AKARI Infrared Camera near-infrared spectroscopic survey of the Large Magellanic Cloud (LMC). The circumstellar material of young stellar objects (YSOs) are affected by galactic environments such as a metallicity or radiation field. Ices control the chemical balance of circumstellar environments of embedded YSOs. We detected absorption features of the H2O ice 3.05 μm and the CO2 ice 4.27 μm stretching mode toward seven massive YSOs in the LMC. This is the first detection of the 4.27 μm CO2 ice feature toward extragalactic YSOs. The present samples are for the first time spectroscopically confirmed to be YSOs. We used a curve-of-growth method to evaluate the column densities of the ices and derived the CO2/H2O ratio to be 0.45±0.17. This is clearly higher than that seen in Galactic massive YSOs (0.17±0.03). We suggest that the strong ultraviolet radiation field and/or the high dust temperature in the LMC may be responsible for the observed high CO2 ice abundance.


1992 ◽  
Vol 45 (4) ◽  
pp. 487
Author(s):  
WJ Zealey

Our current understanding of Herbig-Haro objects and their relationship with young stellar outflows is reviewed. The role of multi-waveband observations in the visible, infrared and radio in the study of outflows is discussed with examples drawn from the HH1, HH24 and HH54 outflow complexes. The current theories are briefly considered in the light of spectroscopic and morphological data. It is concluded that although the general mechanism of outflows is understood, the details of the outflowing material's origin and the collimation mechanism remain largely unanswered.


2020 ◽  
Vol 637 ◽  
pp. A64
Author(s):  
J. C. Morford ◽  
D. M. Fenech ◽  
R. K. Prinja ◽  
R. Blomme ◽  
J. A. Yates ◽  
...  

Context. The role of massive stars is central to an understanding of galactic ecology. It is important to establish the details of how massive stars provide radiative, chemical, and mechanical feedback in galaxies. Central to these issues is an understanding of the evolution of massive stars, and the critical role of mass loss via strongly structured winds and stellar binarity. Ultimately, and acting collectively, massive stellar clusters shape the structure and energetics of galaxies. Aims. We aim to conduct high-resolution, deep field mapping at 21 cm of the core of the massive Cygnus OB2 association and to characterise the properties of the massive stars and colliding winds at this waveband. Methods. We used seven stations of the e-MERLIN radio facility, with its upgraded bandwidth and enhanced sensitivity to conduct a 21 cm census of Cygnus OB2. Based on 42 hours of observations, seven overlapping pointings were employed over multiple epochs during 2014 resulting in 1σ sensitivities down to ∼21 μJy and a resolution of ∼180 mas. Results. A total of 61 sources are detected at 21 cm over a ∼0.48° × 0.48° region centred on the heart of the Cyg OB2 association. Of these 61 sources, 33 are detected for the first time. We detect a number of previously identified sources including four massive stellar binary systems, two YSOs, and several known X-ray and radio sources. We also detect the LBV candidate (possible binary system) and blue hypergiant star of Cyg OB2 #12. Conclusions. The 21 cm observations secured in the COBRaS Legacy project provide data to constrain conditions in the outer wind regions of massive stars; determine the non-thermal properties of massive interacting binaries; examine evidence for transient sources, including those associated with young stellar objects; and provide unidentified sources that merit follow-up observations. The 21 cm data are of lasting value and will serve in combination with other key surveys of Cyg OB2, including Chandra and Spitzer.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 319-320
Author(s):  
Takashi Onaka ◽  
Tamami I. Mori ◽  
Itsuki Sakon ◽  
Fumihiko Usui ◽  
Ronin Wu ◽  
...  

AbstractThe Infrared Camera (IRC) onboard AKARI has a near-infrared (2--5μm) spectroscopic capability with high sensitivity that allows us to study the major ice components in various objects. In particular, H2O and CO2 ice absorption features have been detected towards nearby galaxies, including several young stellar objects (YSOs) in the Large Magellanic Cloud (LMC), as well as a number of HII region-PDR complexes for the first time by IRC spectroscopy. While observations in the LMC show a high ratio (~0.34) of the CO2 to H2O ice column densities, the ratios in Galactic HII-region-PDR complexes are in the range of 0.1--0.2, being compatible with those found in Galactic massive YSOs in previous studies. The good correlation supports concurrent formation of the two ice species on the grain surface and the higher ratio in the low-metallicity LMC suggests possible environmental effects in the formation process.


1999 ◽  
Vol 117 (3) ◽  
pp. 1471-1484 ◽  
Author(s):  
Yoichi Itoh ◽  
Motohide Tamura ◽  
Tadashi Nakajima

2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2018 ◽  
Vol 234 (2) ◽  
pp. 42 ◽  
Author(s):  
Jungmi Kwon ◽  
Takao Nakagawa ◽  
Motohide Tamura ◽  
James H. Hough ◽  
Minho Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document