Verbal and spatial working memory performance among HIV-infected adults

2002 ◽  
Vol 8 (4) ◽  
pp. 532-538 ◽  
Author(s):  
CHARLES H. HINKIN ◽  
DAVID J. HARDY ◽  
KAREN I. MASON ◽  
STEVEN A. CASTELLON ◽  
MONA N. LAM ◽  
...  

Subtypes of working memory performance were examined in a cohort of 50 HIV-infected adults and 23 uninfected controls using an n-back paradigm (2-back) in which alphabetic stimuli were quasi-randomly presented to a quadrant of a computer monitor. In the verbal working memory condition, participants determined whether each successive letter matched the letter that appeared two previously in the series, regardless of spatial location. In the spatial working memory condition, participants determined whether each letter matched the spatial location of the letter that had appeared two previously, regardless of letter identity. The dependent variable was percent accuracy in each condition. Results of mixed model ANOVA revealed that the HIV-infected participants performed significantly worse than controls on both the verbal and spatial working memory tasks. A significant main effect for working memory condition was also present with both participant groups performing better on the spatial working memory task. These results, the first study of HIV-infected adults to directly compare verbal versus spatial working memory performance using the identical test stimuli across task conditions, suggests that HIV infection is associated with a decrement in working memory efficiency that is equally apparent for both verbal and spatial processing. These findings implicate central executive dysfunction as a likely substrate and provide the basis for hypothesizing that decline in working memory may contribute to other HIV-associated neuropsychological deficits. (JINS, 2002, 8, 532–538.)

2007 ◽  
Vol 97 (3) ◽  
pp. 2254-2266 ◽  
Author(s):  
Frederik C. Joelving ◽  
Albert Compte ◽  
Christos Constantinidis

Working memory is mediated by the discharges of neurons in a distributed network of brain areas. It was recently suggested that enhanced rhythmicity in neuronal activity may be critical for sustaining remembered information. To test whether working memory is characterized by unique temporal discharge patterns, we analyzed the autocorrelograms and power spectra of spike trains recorded from the posterior parietal cortex of monkeys performing a visuospatial working-memory task. We compared the intervals of active memory maintenance and fixation and repeated the same analysis in spike trains from monkeys never trained to perform any kind of memory task. The most salient effect we observed was a decrease of power in the 5- to 10-Hz frequency range during the presentation of visual stimuli. This pattern was observed both in the working-memory condition and the control condition, although it was more prominent in the former, where it persisted after cue presentation when the monkeys actively remembered the spatial location of the stimulus. Low-frequency power suppression resulted from relative refractory periods that were significantly longer in the working-memory condition and presumably emerged from local-circuit inhibition. We also detected a spectral peak in the 15- to 20-Hz range, although this was more prominent during fixation than during the stimulus and working-memory periods. Our results are in line with previous reports in prefrontal cortex and indicate that unique temporal patterns of single-neuron firing characterize persistent delay activity, although these do not involve the appearance of enhanced oscillations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shawn E. Christ ◽  
Janine P. Stichter ◽  
Karen V. O’Connor ◽  
Kimberly Bodner ◽  
Amanda J. Moffitt ◽  
...  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication. It has been postulated that such difficulties are related to disruptions in underlying cognitive processes such as executive function. The present study examined potential changes in executive function performance associated with participation in the Social Competence Intervention (SCI) program, a short-term intervention designed to improve social competence in adolescents with ASD. Laboratory behavioral performance measures were used to separately evaluate potential intervention-related changes in individual executive function component processes (i.e., working memory, inhibitory control, and cognitive flexibility) in a sample of 22 adolescents with ASD both before and after intervention. For comparison purposes, a demographically matched sample of 14 individuals without ASD was assessed at identical time intervals. Intervention-related improvements were observed on the working memory task, with gains evident in spatial working memory and, to a slightly lesser degree, verbal working memory. Significant improvements were also found for a working memory-related aspect of the task switching test (i.e., mixing costs). Taken together, these findings provide preliminary support for the hypothesis that participation in the SCI program is accompanied by changes in underlying neurocognitive processes such as working memory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Elisa Castaldi ◽  
Manuela Piazza ◽  
Evelyn Eger

Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.e., susceptible to biases from non-numerical quantities). Such biases have been found to be particularly pronounced in individuals with developmental dyscalculia (DD), a learning disability affecting the acquisition of arithmetic skills. Motivated by findings showing that DD individuals are also often impaired in visuo-spatial working memory, we hypothesized that resources supporting this type of working memory, which allow for the simultaneous identification of multiple objects, might also be critical for precise and unbiased perception of larger numerosities. We therefore tested whether loading working memory of healthy adult participants during discrimination of large numerosities would lead to increased interference from non-numerical quantities. Participants performed a numerosity discrimination task on multi-item arrays in which numerical and non-numerical stimulus dimensions varied congruently or incongruently relative to each other, either in isolation or in the context of a concurrent visuo-spatial or verbal working memory task. During performance of the visuo-spatial, but not verbal, working memory task, precision in numerosity discrimination decreased, participants’ choices became strongly biased by item size, and the strength of this bias correlated with measures of arithmetical skills. Moreover, the interference between numerosity and working memory tasks was bidirectional, with number discrimination impacting visuo-spatial (but not verbal) performance. Overall, these results suggest that representing visual numerosity in a way that is unbiased by non-numerical quantities relies on processes which explicitly segregate/identify the locations of multiple objects that are shared with visuo-spatial (but not verbal) working memory. This shared resource may potentially be impaired in DD, explaining the observed co-occurrence of working memory and numerosity discrimination deficits in this clinical population.


2013 ◽  
Vol 7 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Natalia Fiorentino ◽  
Ezequiel Gleichgerrcht ◽  
María Roca ◽  
Marcelo Cetkovich ◽  
Facundo Manes ◽  
...  

ABSTRACT Executive dysfunction may result from prefrontal circuitry involvement occurring in both neurodegenerative diseases and psychiatric disorders. Moreover, multiple neuropsychiatric conditions, may present with overlapping behavioral and cognitive symptoms, making differential diagnosis challenging, especially during earlier stages. In this sense, cognitive assessment may contribute to the differential diagnosis by providing an objective and quantifiable set of measures that has the potential to distinguish clinical conditions otherwise perceived in everyday clinical settings as quite similar. Objective: The goal of this study was to investigate the utility of the INECO Frontal Screening (IFS) for differentiating bv-FTD patients from patients with Major Depression. Methods: We studied 49 patients with bv-FTD diagnosis and 30 patients diagnosed with unipolar depression compared to a control group of 26 healthy controls using the INECO Frontal Screening (IFS), the Mini Mental State Examination (MMSE) and the Addenbrooke's Cognitive Examination-Revised (ACE-R). Results: Patient groups differed significantly on the motor inhibitory control (U=437.0, p<0.01), verbal working memory (U=298.0, p<0.001), spatial working memory (U=300.5, p<0.001), proverbs (U=341.5, p<0.001) and verbal inhibitory control (U=316.0, p<0.001) subtests, with bv-FTD patients scoring significantly lower than patients with depression. Conclusion: Our results suggest the IFS can be considered a useful tool for detecting executive dysfunction in both depression and bv-FTD patients and, perhaps more importantly, that it has the potential to help differentiate these two conditions.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Morteza Salimi ◽  
Farhad Tabasi ◽  
Milad Nazari ◽  
Sepideh Ghazvineh ◽  
Alireza Salimi ◽  
...  

AbstractCognitive functions such as working memory require integrated activity among different brain regions. Notably, entorhinal cortex (EC) activity is associated with the successful working memory task. Olfactory bulb (OB) oscillations are known as rhythms that modulate rhythmic activity in widespread brain regions during cognitive tasks. Since the OB is structurally connected to the EC, we hypothesized that OB could modulate EC activity during working memory performance. Herein, we explored OB–EC functional connectivity during spatial working memory performance by simultaneous recording local field potentials when rats performed a Y-maze task. Our results showed that the coherence of delta, theta, and gamma-band oscillations between OB and EC was increased during correct trials compared to wrong trials. Cross-frequency coupling analyses revealed that the modulatory effect of OBs low-frequency phase on EC gamma power and phase was enhanced when animals correctly performed working memory task. The influx of information from OB to EC was also increased at delta and gamma bands within correct trials. These findings indicated that the modulatory influence of OB rhythms on EC oscillations might be necessary for successful working memory performance.


2015 ◽  
Vol 22 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Gabriela Alarcón ◽  
Siddharth Ray ◽  
Bonnie J. Nagel

AbstractObjectives: Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods: Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results: BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions: These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. (JINS, 2015, 21, 281–292)


2016 ◽  
Vol 47 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Aleksandra Gruszka ◽  
Daniel Bor ◽  
Roger R. Barker ◽  
Edward Necka ◽  
Adrian M. Owen

Abstract Idiopathic Parkinson’s disease (PD) impairs working memory, but the exact nature of this deficit in terms of the underlying cognitive mechanisms is not well understood. In this study patients with mild clinical symptoms of PD were compared with matched healthy control subjects on a computerized battery of tests designed to assess spatial working memory and verbal working memory. In the spatial working memory task, subjects were required to recall a sequence of four locations. The verbal working memory task was methodologically identical except for the modality of the stimuli used, requiring subjects to orally recall a sequence of six digits. In either case, half of the sequences were structured in a way that allowed ‘chunking’, while others were unstructured. This manipulation was designed to dissociate the strategic component of task performance from the memory-load component. Mild medicated patients with PD were impaired only on the structured versions of the verbal working memory tasks. The analogous deficit in the spatial working memory was less pronounced. These findings are in agreement with the hypothesis that working memory deficits in PD reflect mainly the executive component of the tasks and that the deficits may be at least partly modality-independent.


2011 ◽  
Vol 198 (5) ◽  
pp. 398-403 ◽  
Author(s):  
Jonathan Huntley ◽  
Daniel Bor ◽  
Adam Hampshire ◽  
Adrian Owen ◽  
Robert Howard

BackgroundChunking is a powerful encoding strategy that significantly improves working memory performance in normal young people.AimsTo investigate chunking in patients with mild Alzheimer's disease and in a control group of elderly people without cognitive impairment.MethodPeople with mild Alzheimer's disease (n = 28) were recruited and divided according to Mini-Mental State Examination score into mild and very mild disease groups. A control group of 15 elderly individuals was also recruited. All participants performed digit and spatial working memory tasks requiring either unstructured sequences or structured sequences (which encourage chunking of information) to be recalled.ResultsThe control group and both disease groups performed significantly better on structured trials of the digit working memory tasks, indicating successful use of chunking strategies to improve verbal working memory performance. The control and very mild disease groups also performed significantly better on structured trials of the spatial task, whereas those with mild disease demonstrated no significant difference between the structured and unstructured spatial conditions.ConclusionsThe ability to use chunking as an encoding strategy to improve verbal working memory performance is preserved at the mild stage of Alzheimer's disease, whereas use of chunking to improve spatial working memory is impaired by this stage. Simple training in the use of chunking might be a beneficial therapeutic strategy to prolong working memory functioning in patients at the earliest stage of Alzheimer's disease.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
K. Verébová ◽  
J. Horáček

Background:Temporal correlations in the blood oxygen level-dependent (BOLD) signal oscillations of widely separated brain regions are presumed to reflect intrinsic functional connectivity and have been demonstrated across several distinct networks serving different functions. Impaired connectivity or disturbed integration of neural activity, as seen in brain networks in schizophrenia, might influence the symptoms of the disorder and biologically implicates in temporal and spatial alterations in BOLD signal fluctuations.The objective of this study is to examine the activity of a temporal lobe and default modes during working memory task in schizophrenic patients. These two networks were selected because both have been previously studied.Methods:Patients with schizophrenia and healthy comparison subjects undergo functional magnetic resonance imaging (fMRI) scanning while performing a verbal working memory “n-back” task. All subjects receive identical training in task performance prior to scanning. Independent component analysis will be used to identify the default mode and temporal lobe component. Spatial and temporal aspects of the networks will be examined in patients versus healthy control subjects.Results:Data collection and statistical evaluation will proceed until October 2008.Conclusions:Identifying specific activation patterns for the temporal lobe and default mode components may contribute to the identification of a trait-related marker for schizophrenia and improve diagnostic sensitivity and specificity.


Sign in / Sign up

Export Citation Format

Share Document