Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates

2001 ◽  
Vol 73 (2) ◽  
pp. 313-322 ◽  
Author(s):  
E. Bauer ◽  
B. A. Williams ◽  
C. Voigt ◽  
R. Mosenthin ◽  
M. W. A. Verstegen

AbstractA comparison of in vitro microbial activity was made between inocula from faeces of adult and unweaned pigs, using a range of carbohydrate-rich substrates. The substrates tested were classified into groups (fibre-rich, grains, gums, pectin, saccharides, storage carbohydrates, and miscellaneous). Proximate and fibre analyses were determined for all substrates tested. Fermentation kinetics were measured according to the cumulative gas production technique. End-point products such as gas, volatile fatty acids and ammonia were also determined. The faeces from the adult pigs (ATF) were collected from four castrated finisher pigs (Dutch Landrace×Great Yorkshire). These were offered a diet based on highly digestible maize starch and fish meal, so as to be as free as possible of fermentable carbohydrates. The unweaned piglet faeces were collected from 19 unweaned piglets (male and female) which were 27 to 30 days old. The parameters were tested for significance by an analysis of variance using the Tukey's studentized range test of multiple comparisons. There were significant differences in the fermentation patterns both due to source of substrate and inoculum. It would appear that the metabolic activity of the microflora does differ significantly between adult and weanling pigs, though this varied for the different carbohydrates tested. Suggestions are made as to how to select potential carbohydrate ingredients for an in vivo experiment, based on their in vitro fermentation characteristics.

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 109
Author(s):  
Sukruthai Sommai ◽  
Anusorn Cherdthong ◽  
Chanon Suntara ◽  
Sarong So ◽  
Metha Wanapat ◽  
...  

Two experiments were conducted under this study: Experiment 1 was to study production yield, chemical composition, and in vitro degradability of Brazilian spinach (Alternanthera sissoo; BS) leaf and leaf + leaf-stalk at various maturity ages of 15, 30, 45, and 60 days after plantation and regrowth and Experiment 2 was to evaluate the effect of flavonoid extract from BS leaf and leaf + leaf-stalk and dietary ratios on ruminal gas production, fermentation characteristics, and in vitro degradability. Experiment 1 showed that maturity ages after planting and regrowth increased, the yield significantly increased. Increasing maturity ages significantly (p < 0.05) increased neutral detergent fiber and acid detergent fiber content and decreased crude protein content, total flavonoid (TF) content, and degradability for both leaf and leaf + leaf-stalk. Maturity ages from 15 to 30 days after plantation and regrowth resulted (p < 0.05) the highest TF content and degradability for both leaf and leaf + leaf-stalk. Thus, BS leaf and leaf + leaf-stalk samples from 15 to 30 days of age were used for flavonoid extraction and used in the Experiment 2. Experiment 2 was conducted according to a 3 × 5 factorial experiment. Three roughage to concentrate (R:C) ratios at 50:50, 40:60, and 30:70 were used, and five levels of flavonoid extract (FE) at 0, 10, 20, 30, and 40 mg of substrate dry matter (DM) were supplemented. Experiment 2 showed that R:C ratio and FE had an interaction effect only on acetate to propionate ratio. Varying R:C ratios significantly increased (p < 0.05) in vitro DM degradability, total volatile fatty acids (VFA), and propionate (C3) concentration. FE supplementation linearly (p < 0.05) increased total VFA and C3 concentration and decreased methane production and protozoal population. This study could conclude that FE from BS could effectively modulate ruminal fermentation and decrease methane production. However, in vivo study needs to elucidate in order to validate the present results.


2020 ◽  
Vol 28 (3) ◽  
pp. 113
Author(s):  
J. Zemzmi ◽  
L. Ródenas ◽  
E. Blas ◽  
H. Abdouli ◽  
T. Najar ◽  
...  

<p>This study aims to determine the effect of dietary inclusion of fenugreek seed gum (FSG), rich in galactomannans, on nutrient apparent digestibility and caecal environment, as well as on <em>in vitro</em> caecal fermentation of Tunisian growing rabbits. Three experimental diets were formulated, including 0, 0.25 and 0.5% of FSG (FSG0, FSG0.25 and FSG0.5, respectively) for the <em>in vivo</em> trial and 0, 0.125, 0.25, 0.5 and 100% of FSG (FSG0, FSG0125, FSG0.25, FSG0.5 and FSG100, respectively) for the <em>in vitro</em> trial. In the <em>in vivo</em> trial, 45 weaned rabbits 31 d old (15 per treatment) were housed in individual cages until 94 d of age. Apparent digestibility coefficients were determined at two ages, from 38 to 41 and from 56 to 59 d old, and caecal traits were recorded after slaughtering. In the <em>in vitro</em> trial, the five experimental diets were incubated with a rabbit caecal inoculum. Gas production was measured and modelled until 72 h and the fermentation traits were measured. Apparent faecal digestibility coefficients of main nutrients and main caecal environment traits were not significantly affected by the dietary inclusion of FSG (<em>P</em>&gt;0.05). However, animals fed with FSG showed lower caecal pH (–0.15; <em>P</em>&lt;0.05) values. Regarding the in vitro fermentation, FSG100 increased asymptotic gas production (+11.25, <em>P</em>&lt;0.001), sharpness of the switching characteristic of the profile (+1.98, <em>P</em>&lt;0.001) and the maximum substrate degradation rate (RM) (+0.188, <em>P</em>&lt;0.001), but decreasing the time after incubation at which half of the asymptotic amount of gas has been formed (–5.86, <em>P</em>&lt;0.001) and at which RM occurs (–4.53, <em>P</em>&lt;0.01). Likewise, FSG100 significantly decreased caecal pH (–1.035, <em>P</em>&lt;0.001), lactic acid (–9.51, <em>P</em>&lt;0.069) and N-NH<sub>3</sub> concentrations (–12.81, <em>P</em>&lt;0.001). Meanwhile, it increased the total volatile fatty acids (VFA) production (+43.15, <em>P</em>&lt;0.001). Gradual dietary inclusion of FSG from 0 to 0.5% only significantly increased total VFA production in the caecum (+100 mmol/L per percentage point of FSG inclusion; <em>P</em>&lt;0.05). In conclusion, FSG is highly and rapidly in vitro fermented by rabbit caecal bacteria. However, dietary inclusion of FSG up to 0.5%, might be insufficient to affect the apparent digestibility and fermentation profile of growing rabbits to a great extent.</p>


2011 ◽  
Vol 91 (4) ◽  
pp. 695-702 ◽  
Author(s):  
J. E. Ramirez-Bribiesca ◽  
Y. Wang ◽  
L. Jin ◽  
T. Canam ◽  
J. R. Town ◽  
...  

Ramirez-Bribiesca, J. E., Wang, Y., Jin, L., Canam, T., Town, J. R., Tsang, A., Dumonceaux, T. J. and McAllister, T. A. 2011. Chemical characterization and in vitro fermentation of Brassica straw treated with the aerobic fungus, Trametes versicolor . Can. J. Anim. Sci. 91: 695–702. Brassica napus straw (BNS) was either not treated or was treated with two strains of Trametes versicolor; 52J (wild type) or m4D (a cellobiose dehydrogenase-deficient mutant) with four treatments: (i) untreated control (C-BNS), (ii) 52J (B-52J), (iii) m4D (B-m4D) or (iv) m4D+glucose (B-m4Dg). Glucose was provided to encourage growth of the mutant strain. All treatments with T. versicolor decreased (P<0.05) neutral-detergent fibre and increased (P<0.05) protein and the concentration of lignin degradation products in straw. Ergosterol was highest (P<0.05) in straw treated with B-52J, suggesting it generated the most fungal biomass. Insoluble lignin was reduced (P<0.05) in straw treated with B-52J and B-m4D, but not with B-m4Dg. Mannose and xylose concentration were generally higher (P<0.05) in straw treated with fungi, whereas glucose and galactose were lower as compared with C-BNS. The four treatments above were subsequently assessed in rumen in vitro fermentations, along with BNS treated with 2 mL g−1of 5 N NaOH. Concentrations of total volatile fatty acids after 24 and 48h were lower (P<0.05) in incubations that contained BNS treated with T. versicolor as compared with C-BNSor NaOH-treated BNS. Compared with C-BNS, in vitrodry matter disappearance and gas production were increased (P<0.05) by NaOH, but not by treatment with either strain of T. versicolor. Although treatment with T. versicolor did release more lignin degradation products, it did not appear to provide more degradable carbohydrate to in vitro rumen microbial populations, even when a mutant strain with compromised carbohydrate metabolism was utilized. Production of secondary compounds by the aerobic fungi may inhibit rumen microbial fermentation.


1989 ◽  
Vol 62 (1) ◽  
pp. 103-119 ◽  
Author(s):  
Claude Andrieux ◽  
Daniele Gadelle ◽  
Christine Leprince ◽  
E. Sacquet

The effects of ingestion of poorly digestible carbohydrates on bacterial transformations of cholic acid and β-muricholic acid were studied in rats fed on increasing levels of lactose, lactulose, amylomaize or potato starches. Each level was given for 3 weeks and, at the end of each dietary treatment, bile acid faecal composition was analysed and a group of six rats was killed every 4 h during 24 h to determine the amounts of fermented carbohydrate and fermentation characteristics (caecal pH, volatile fatty acids (VFA) and lactic acid concentrations). Fermentation of carbohydrates decreased caecal pH and enhanced caecal VFA and lactic acid concentrations. Irrespective of the poorly digestible carbohydrate, the variation of bacterial transformation always occurred in the same way: the bacterial transformation of β-muricholic acid into hyodeoxycholic acid was the first to disappear, while ω-muricholic acid formation increased; second, cholic acid transformation decreased and finally all bile acid transformations were strongly affected. There was a significant correlation between bile acid transfer and the minimal caecal pH in vivo. This effect of pH was similar in vitro. To determine whether the levels of bacteria which transformed bile acids were modified, rats fed on the highest amounts of poorly digestible carbohydrates were introduced into isolators and carbohydrate feeding was stopped. Caecal pH recovered its initial value but bile acid transformations remained changed, suggesting that the intestinal microflora were modified by ingestion of fermentable carbohydrates.


1998 ◽  
Vol 1998 ◽  
pp. 30-30 ◽  
Author(s):  
J.G.M. Houdijk ◽  
B.A. Williams ◽  
S. Tamminga ◽  
M.W.A. Verstegen

Dietary fructooligosaccharides (FOS) shifted the proportion of propionate (↑) and acetate (↓) compared to transgalactooligosaccharides (TOS) in weaner pigs' ileal digesta, both in vivo and in vitro (Houdijk et al., 1997). This could be related to different fermentation rates between these so-called non-digestible oligosaccharides (NDOs). These rates were studied via the cumulative gas production technique comparing FOS, TOS, and glucose.


1998 ◽  
Vol 1998 ◽  
pp. 168-168 ◽  
Author(s):  
A. Hussain ◽  
E. L. Miller

Inclusion of lactose in dairy cow rations increases dry matter intake (DMI) and milk yield (Garnsworthy 1996). This may be due to the relatively slow rate of lactose fermentation ( Hussain and Miller, 1998) sustaining better regulation of rumen pH and also possible consequence for microbial protein synthesis (Chamberlain et al., 1993).This experiment was conducted to study the changes in rumen environment over the adaptation period and effect of these changes on the fermentation of lactose itself.Three Suffolk wethers (b.wt 56± 7.36 kg) maintained on hay and concentrate (600:400) were offered 50g lactose per day for 16 days. Rumen liquor collected on dayO (before offering lactose), 4, 8, 12 and 16 was used to measure gas production from sucrose and lactose ( Menke et al., 1979). On these days rumen samples were collected at 0, 1, 2, 4, 6 and 8 hrs after the morning feed. Rumen pH, ammonia N (NH3N) and volatile fatty acids (VFA) were measured. At 8 hrs time rumen samples were also taken for protozoa enumeration. Data obtained were analysed using ANOVA procedure of Genstat 5.


1998 ◽  
Vol 1998 ◽  
pp. 30-30
Author(s):  
J.G.M. Houdijk ◽  
B.A. Williams ◽  
S. Tamminga ◽  
M.W.A. Verstegen

Dietary fructooligosaccharides (FOS) shifted the proportion of propionate (↑) and acetate (↓) compared to transgalactooligosaccharides (TOS) in weaner pigs' ileal digesta, both in vivo and in vitro (Houdijk et al., 1997). This could be related to different fermentation rates between these so-called non-digestible oligosaccharides (NDOs). These rates were studied via the cumulative gas production technique comparing FOS, TOS, and glucose.


1979 ◽  
Vol 93 (1) ◽  
pp. 217-222 ◽  
Author(s):  
K. H. Menke ◽  
L. Raab ◽  
A. Salewski ◽  
H. Steingass ◽  
D. Fritz ◽  
...  

SUMMARYA rapid method for measuring gas production during incubation of feedingstuffs with rumen liquor in vitro is described. Gas production in 24 h from 200 mg feed dry matter was well correlated with digestibility of organic matter, determined in vivo with sheep. Multiple regression analysis, when it included data from proximate analysis, resulted in an equation (R = 0·98) for prediction of metabolizable energy content, based on 30 experiments with rations varying in protein and crude fibre content, and 59 other experiments with concentrates. Energy content was in the range of 7·7–13·2 MJ ME/kg D.M. (± S.D. = 11·17 ± 1·08). The residual standard deviation of the equation was 0·25 MJ. Gas production was measured in calibrated syringes. The only chemical determinations needed are dry matter, protein and fat. Differences in activity between batches of rumen liquor are corrected by reference to gas production with standard feedingstuffs (hay meal and maize starch).


2020 ◽  
Vol 48 ◽  
Author(s):  
Eliéder Prates Romanzini ◽  
Américo Garcia Da Silva Sobrinho ◽  
Roberta De Lima Valença ◽  
Thiago Henrique Borghi ◽  
Fernanda De Almeida Merlim ◽  
...  

Background: Intensification of livestock is a strategy that increases productivity, but the diets used to increase animal production efficiency are composed mainly of corn and soybean, thereby increasing competition between animals and humans for the same food crops. This study evaluated nutrient intake, apparent digestibility of dry matter (DM) and nutrients, kinetics of gas production, and concentration of volatile fatty acids on diets with or without inclusion of biodiesel co-products formulated for feedlot lambs. So, the hypothesis is that replace of traditional ingredients by biodiesel co-products changes rumen parameters and methane emissions.Material, Methods & Results: The experiment was developed in São Paulo State University (Unesp), Jaboticabal/SP, Brazil, in Sheep Production Laboratory, which is owned to Animal Science Department. All trials developed in this study used a feedlot system, where animals were kept in individual pen. Forty Ile de France lambs male non-castrated were used in in vivo trial. To obtain rumen fluid, that was used in in vitro trial, four Santa Inês lambs with rumen cannula were used. The treatments evaluated were four diets: Control diet: roughage + concentrate; PM20: roughage + concentrate with peanut meal (PM) at 20% of DM; CG25: roughage + concentrate with crude glycerin (CG) at 25% of DM; and PMCG: roughage + concentrate with PM at 10% of DM and CG at 12.5% of DM. The roughage:concentrate ratio was 40:60 for all these diets. The parameters of the in vitro and in vivo experiments used were completely randomized with four treatments. When significant, the means between treatments were compared using Tukey test (P < 0.05). There was no effect of co-product inclusion on intake, except ether extract and neutral detergent fiber, which were higher for PM20 compared with CG25 diet. Apparent digestibility of dry matter (79.87%) and some nutrients (organic matter, crude protein, and neutral detergent fiber) was higher (P < 0.05) with CG25 diet. In vitro cumulative gas production was greater in CG25 and PMCG compared to the other diets, at early measurement points (2, 4, 6, and 10 h). The concentrations of methane, volatile fatty acids, and acetate:propionate ratio in vitro did not differ (P > 0.05) among diets.Discussion: Probably the high quality of the glycerin used (83.9% glycerol, 12.01% humidity, 3.79% salts, and 0.28% organic matter, no fat, as described by the manufacturer) may explain the low EE concentration observed in the diet using only crude glycerin and the observed lack of DMI effects in all diets. About apparent digestibility, the greater values measured for crude protein can be explained by superior synchronism during fermentation of the proteins and carbohydrates in the diet. The data showed that treatment CG25 obtained higher initial gas production, followed by treatment PMCG which contained 12.5% crude glycerin. Probably these results were caused by the greater apparent digestibility of DM in treatments that included crude glycerin. Our results of volatile fatty acid concentration are different from the decrease in molar proportion of acetic acid and increase of propionic acid described by several authors, with the inclusion of glycerin in the diet. However, the absence of effect by co-product inclusion on the molar proportion of acetic, propionic, and butyric acids measured in this trial reinforce the report from other authors that affirmed the same situation. Hence, the inclusion of PM at 20% of DM and CG at 25% of DM could successfully replace the traditional diets of feedlot lambs such as soybean and corn, respectively, without damages to intake and ruminal parameters in vitro.


2015 ◽  
pp. 4726-4738 ◽  
Author(s):  
John Ramírez ◽  
Sandra Posada O ◽  
Ricardo Noguera

ABSTRACT Objective. To evaluate the effect of Kikuyu grass (Pennisetum clandestinum) harvested at two different ages and three forage: concentrate supplement ratios (F/C) on methane (CH4) production, dry matter digestibility (DMD), and fermentation profile using the in vitro gas production technique. Materials and methods. six treatments, resulting from the combination of pasture age (30 or 60 days) and F/C (100/0, 75/25, or 50/50) were evaluated using a 2x3 factorial design. The response variables were measured 6, 12, 24 and 48 hours after incubation. A repeated-measure over time design was used to analyze the data, and differences between means were determined with the LSMEANS procedure of SAS. Results. the youngest grass (30 days) was more digestible, produced less CH4 per gram of digestible dry matter (dDM) and more total volatile fatty acids (VFA) compared to the oldest grass (60 days; p <0.05). Reductions of the F/C ratio increased DMD and CH4 production per gram of dDM (p<0.05) but had no significant effect on VFA concentration (p>0.05). Conclusions. under in vitro conditions and pH close to neutrality, the older grass reduces DMD and increases CH4 production per gram of dDM, while a F/C reduction increases DMD and CH4 production per gram of dDM, which differs with reports conducted in vivo.


Sign in / Sign up

Export Citation Format

Share Document