Of algorithms, buildings and fighter jets: a conversation with Robin Forrest

2017 ◽  
Vol 21 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Daniel Cardoso Llach ◽  
Robin Forrest

A founding member of the Computer-Aided Design Group at the University of Cambridge, UK, and a student and collaborator of CAD pioneer Steven A. Coons at MIT, Robin Forrest occupies an important place in the history of computational design. Along with important contributions to the mathematics of shape representation, his coining of the term ‘computational geometry’ in 1971 offered a handle on design techniques that started to emerge – somewhat uncomfortably at first – in the interstices of engineering, mathematics, and the fledgling field of computer science. Initially fostered by governmentsponsored research into Computer-Aided Design for aircraft and car manufacturing, the methods he helped develop have since been encoded in countless commercial software systems for 3D modelling and simulation, helping structure the intellectual work – and the professional identity – of architects, engineers, and other practitioners of design.

2018 ◽  
Vol 6 (1) ◽  
pp. 16-19
Author(s):  
Владимир Овтов ◽  
Vladimir Ovtov ◽  
Алексей Поликанов ◽  
Aleksey Polikanov

The article is devoted to the use of modern computer technologies in the teaching of engineering and graphic disciplines in the engineering specialties of an agricultural university, to the formation of professional engineering and graphic competencies for students in the process of computer graphics training, computer modeling at the bachelor’s level and the basics of computer-aided design at the master’s level, to the development and implementation of work programs as part of the main educational programs providing two-level training using the national program computer-aided design KOMPAS-3D. There is an integrative of information-developing, personality-oriented teaching methods implemented in work programs ensuring the formation of competencies determined by the federal state standards of higher education and developed independently by the university.


2001 ◽  
Vol 123 (09) ◽  
pp. 60-63 ◽  
Author(s):  
Jean Thilmany

This article reviews computer-aided design (CAD) software that is meant to function as more than a drawing tool; design offices and general contractors are still learning how to take advantage of its full potential even as the software systems mature. CAD systems are used to sell products before they are produced, to warehouse past designs in a central library, and to describe an intended design to a parts supplier. Traditional wisdom holds that 2D CAD systems are best suited to products with simple geometries that can be easily represented without considerable interpretive errors, products such as the nozzles. Often, 2D drawings can be ambiguous and are open to errors in interpretation, especially in cases of complex designs, according to the Queensland Manufacturing Institute (QMI) report. Century Tool wanted to use the 3D CAD software to check for interferences in the design of a part a customer had charged Century Tool with building.


2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Berend Denkena ◽  
Marcel Wichmann ◽  
Klaas Maximilian Heide ◽  
René Räker

The automated process chain of an unmanned production system is a distinct challenge in the technical state of the art. In particular, accurate and fast raw-part recognition is a current problem in small-batch production. This publication proposes a method for automatic optical raw-part detection to generate a digital blank shadow, which is applied for adapted CAD/CAM (computer-aided design/computer-aided manufacturing) planning. Thereby, a laser-triangulation sensor is integrated into the machine tool. For an automatic raw-part detection and a workpiece origin definition, a dedicated algorithm for creating a digital blank shadow is introduced. The algorithm generates adaptive scan paths, merges laser lines and machine axis data, filters interference signals, and identifies part edges and surfaces according to a point cloud. Furthermore, a dedicated software system is introduced to investigate the created approach. This method is integrated into a CAD/CAM system, with customized software libraries for communication with the CNC (computer numerical control) machine. The results of this study show that the applied method can identify the positions, dimensions, and shapes of different raw parts autonomously, with deviations less than 1 mm, in 2.5 min. Moreover, the measurement and process data can be transferred without errors to different hardware and software systems. It was found that the proposed approach can be applied for rough raw-part detection, and in combination with a touch probe for accurate detection.


Author(s):  
F J Richardson

Success of the design process hinges on efficient communication between the various functions involved. Traditionally this communication has been ‘paper based’ with information passing between sales, design, production and manufacture to describe the complete history of the product. This complex interaction between the functions depends on the availability at each stage of the most up-to-date and accurate information. The paper based system has many shortcomings in this respect particularly the inability of the designer to assess interactively the effect of any changes he may make on the cost, delivery, quality and performance of the product. The use of computer aided design as a central part of the computer aided engineering system allows a company greatly to improve communications during a project by giving the engineer a way of providing accurate information more quickly to each adjacent function while receiving feedback on the effectiveness and suitability of the product in a fraction of the time.


Author(s):  
Alexandra Schonning ◽  
Daniel Cox

This paper addresses the importance of integrating Computer Aided Engineering (CAE) software and applications in the mechanical engineering curriculum. Computer aided engineering tools described include Computer-Aided Design, Computer-Aided Manufacturing, and Computer-Aided Analysis tools such as finite element (FE) modeling and analysis. The integration of CAE software tools in the curriculum is important for three primary reasons: it helps students understand fundamental engineering principles by providing an interactive and visual representation of concepts, it provides students an opportunity to explore their creative ideas and designs while keeping prototyping costs to a minimum, and it teaches students the valuable skill of more efficiently designing, manufacturing and analyzing their products with current technology making them more marketable for their future engineering careers. While CAE has been used in the classroom for decades, the mechanical engineering program at the University of North Florida is making an aggressive effort in preparing the future engineering workforce through computer-aided project-centered education. The CAE component of this effort includes using CAE software when teaching stress, strain, dynamics, kinematics, vibrations, finite element modeling and analysis, design and design for manufacturing, manufacturing and technical communication concepts. This paper describes CAE projects undertaken in several of the mechanical engineering courses at UNF in an effort to share creative teaching techniques for others to emulate.


Author(s):  
Zbigniew Raszewski ◽  
Agnieszka Nowakowska-Toporowska ◽  
Danuta Nowakowska ◽  
Włodzimierz Więckiewicz

: Acrylic resins are the most commonly used materials in prosthetics and orthodontics until now. They have a well-documented history of use as biomaterials in the manufacture of different types of dental appliances. The objective of this study was to describe the properties of acrylic resins and the processing methods used for these materials in dentistry. The review depicts the most important achievements in this area, indicating that the resin technology evolved in different directions. The mechanical and biological properties of acrylic resins were improved by the addition of mineral or natural fibers, and/or fillers including nanofillers, as well as by poly(methyl methacrylate) surface modification. The presence of residual monomer was reduced as a result of postpolymerization activity. New types of acrylic resins were developed for processing Computer-Aided Design/Computer-Aided Manufacturing systems and three-dimensional printing.


Author(s):  
Anthony Hotchkiss

Abstract The development and preparation of course material for audiographic teleconferencing, a form of distance education, is discussed. The Group Teleconferencing System (GTCS), used at the University of Wisconsin-Madison, is described. GTCS allows visual material (slides) to be displayed and annotated interactively, and some techniques for the generation and presentation of the slides are suggested, using a computer-aided-design course as an example.


Author(s):  
Jeroen L. Coenders

This paper presents a novel, next-generation, cloud-native parametric and associative platform for digital knowledge, services and automation, and the rationalisation behind the development of and the need for this platform in relation to the history of computational design and engineering, and the advantages and limitations of each step in this evolution: Computer Aided Design (CAD), Building Information Modelling (BIM), Finite Element Analysis (FEA), Parametric and Associative Design (PAD), Generative Design and programming approaches to design and engineering. The paper discusses some of the key functionalities in relation to why they are useful as a next step in the digital transformation of the Architecture, Engineering and Construction (AEC) industry. The paper concludes with some of the challenges for the near future of this platform.


2002 ◽  
Author(s):  
Vojin Nikolic

Since 1998 the author has been developing and teaching computer aided design and computer aided engineering courses intended for mechanical engineering students using the Pro/ENGINEER and I-DEAS software systems. An outline of one of these courses is given and the experience related to another such course is discussed in detail. Students find these courses challenging and enjoyable. The success rate has regularly been very high. By taking such CAD/CAE courses and learning these widely used industry-standard, high-end software systems the students gain valuable experience directly applicable as they join the workforce. The participating students have regularly rated these courses among the most popular ones. The paper discusses the author’s experiences in developing and teaching courses in CAD and CAE, which utilize high-end software. It is intended to provide two examples of successful blends of theoretical and practical topics that have worked very well.


Sign in / Sign up

Export Citation Format

Share Document