Yes and No. How applicable is a focus on palaeo-weather?

2012 ◽  
Vol 19 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Detlef Gronenborn

Toby Pillatt is right. Weather is important. Weather is important every day, as is evident from almost every news broadcast we watch or hear. This is not only true for extreme weather situations – which currently abound in the news – but for ordinary weather conditions at any time. The importance is quite clearly reflected in the numerous weather channels and weather websites and the weather forecast at the end of every news programme. Despite the ‘benefits of civilization’ which today make us often independent of outside influences, many simple daily decisions are still based on the current weather situation. Weather is our first and most immediate environmental experience. It was no different in the past. On the contrary, weather-based decisions were much more important historically than at present, both for individuals and for entire societies. No doubt, then, weather should be of concern also for historical studies. Hence Toby Pillat is right. He is also correct in stating that by involving a palaeo-weather perspective we can add much to our understanding about how past societies operated.

2020 ◽  
Author(s):  
Alexander Wachholz ◽  
Seifeddine Jomaa ◽  
Olaf Büttner ◽  
Robert Reinecke ◽  
Michael Rode ◽  
...  

<p>Due to global climate change, the past decade has been the warmest for Germany since the beginning of climate records. Not only air temperature but also precipitation patterns are changing and therefore influencing the hydrologic cycle. This will certainly influence the chemical status of ground- and surface water bodies as mobilization, dilution and chemical reactions of contaminants are altered. However, it is uncertain if those alterations will impact water quality for better or worse and how they occur spatially. Since water management in Europe is handled at the regional scale, we suggest that an investigation is needed at the same scale to capture and quantify the different responses of the chemical status of water bodies to climate change and extreme weather conditions. In this study, we use open-access data to (1) quantify changes in temperature, precipitation, streamflow and groundwater levels for the past 40 - 60 years and (2) assess their impacts on nutrient concentrations in surface- and groundwater bodies. To disentangle management from climate effects we pay special attention to extreme weather conditions in the past decade. Referring to the Water Framework Directive, we chose the river basin district Elbe as our area of interest. Preliminary results indicate that especially the nitrate concentrations in surface water bodies of the Elbe catchment were positively affected in the last two years, while no significant impact on nitrate levels in shallow groundwater bodies was witnessed. However, many wells showed the first significant increase in water table depth in both years since 1985, raising the question of how fast groundwater-surface water interactions will change in the next years.</p>


2008 ◽  
Vol 49 ◽  
pp. 224-230 ◽  
Author(s):  
Dan Singh ◽  
Amreek Singh ◽  
Ashwagosha Ganju

AbstractIn an analog weather-forecasting procedure, recorded weather in the past analogs corresponding to the current weather situation is used to predict future weather. Consistent with the procedure, a theoretical framework is developed to predict weather at a specific site in the Pir Panjal range of the northwest Himalaya, India, using surface weather observations of the past ten winters (1991/92 to 2001/02) 3 days in advance. Weather predictions were made as snow day with quantitative snowfall category or no-snow day, for day1 through day3. As currently deployed, the procedure routinely provides a 3 day point weather forecast as guidance information to a weather and avalanche forecaster. Forecasts by analog model are evaluated by the various accuracy measures achieved for an independent dataset of three winters (2002/03 to 2004/05). The results indicate that weather forecasts by analog model are quite reliable, in that forecast accuracy corresponds closely to the relative frequencies of observed weather events. Moreover, qualitative weather (snow day or no-snow day) and quantitative categorical snowfall forecasts (quantitative snowfall category for snow day) are better than reference forecasts based on persistence and climatology for day1 predictions. Site-specific snowfall forecast guidance may play a major role in assessing avalanche danger, and accordingly formulating an avalanche forecast for a given area in advance.


2018 ◽  
Vol 48 (3) ◽  
pp. 84-90 ◽  
Author(s):  
E. A. Lapchenko ◽  
S. P. Isakova ◽  
T. N. Bobrova ◽  
L. A. Kolpakova

It is shown that the application of the Internet technologies is relevant in the selection of crop production technologies and the formation of a rational composition of the machine-and-tractor fl eet taking into account the conditions and production resources of a particular agricultural enterprise. The work gives a short description of the web applications, namely “ExactFarming”, “Agrivi” and “AgCommand” that provide a possibility to select technologies and technical means of soil treatment, and their functions. “ExactFarming” allows to collect and store information about temperature, precipitation and weather forecast in certain areas, keep records of information about crops and make technological maps using expert templates. “Agrivi” allows to store and provide access to weather information in the fi elds with certain crops. It has algorithms to detect and make warnings about risks related to diseases and pests, as well as provides economic calculations of crop profi tability and crop planning. “AgCommand” allows to track the position of machinery and equipment in the fi elds and provides data on the weather situation in order to plan the use of agricultural machinery in the fi elds. The web applications presented hereabove do not show relation between the technologies applied and agro-climatic features of the farm location zone. They do not take into account the phytosanitary conditions in the previous years, or the relief and contour of the fi elds while drawing up technological maps or selecting the machine-and-tractor fl eet. Siberian Physical-Technical Institute of Agrarian Problems of Siberian Federal Scientifi c Center of AgroBioTechnologies of the Russian Academy of Sciences developed a software complex PIKAT for supporting machine agrotechnologies for production of spring wheat grain at an agricultural enterprise, on the basis of which there is a plan to develop a web application that will consider all the main factors limiting the yield of cultivated crops.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1241
Author(s):  
Ming-Hsi Lee ◽  
Yenming J. Chen

This paper proposes to apply a Markov chain random field conditioning method with a hybrid machine learning method to provide long-range precipitation predictions under increasingly extreme weather conditions. Existing precipitation models are limited in time-span, and long-range simulations cannot predict rainfall distribution for a specific year. This paper proposes a hybrid (ensemble) learning method to perform forecasting on a multi-scaled, conditioned functional time series over a sparse l1 space. Therefore, on the basis of this method, a long-range prediction algorithm is developed for applications, such as agriculture or construction works. Our findings show that the conditioning method and multi-scale decomposition in the parse space l1 are proved useful in resisting statistical variation due to increasingly extreme weather conditions. Because the predictions are year-specific, we verify our prediction accuracy for the year we are interested in, but not for other years.


Author(s):  
Rahman Ashrafi ◽  
Meysam Amirahmadi ◽  
Mohammad Tolou-Askari ◽  
Vahid Ghods

2021 ◽  
pp. 110900
Author(s):  
Jian Cheng ◽  
Hilary Bambrick ◽  
Laith Yakob ◽  
Gregor Devine ◽  
Francesca D. Frentiu ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


2021 ◽  
Vol 79 (3) ◽  
pp. 969-978
Author(s):  
Taya L. Farugia ◽  
Carla Cuni-Lopez ◽  
Anthony R. White

Australia often experiences natural disasters and extreme weather conditions such as: flooding, sandstorms, heatwaves, and bushfires (also known as wildfires or forest fires). The proportion of the Australian population aged 65 years and over is increasing, alongside the severity and frequency of extreme weather conditions and natural disasters. Extreme heat can affect the entire population but particularly at the extremes of life, and patients with morbidities. Frequently identified as a vulnerable demographic in natural disasters, there is limited research on older adults and their capacity to deal with extreme heat and bushfires. There is a considerable amount of literature that suggests a significant association between mental disorders such as dementia, and increased vulnerability to extreme heat. The prevalence rate for dementia is estimated at 30%by age 85 years, but there has been limited research on the effects extreme heat and bushfires have on individuals living with dementia. This review explores the differential diagnosis of dementia, the Australian climate, and the potential impact Australia’s extreme heat and bushfires have on individuals from vulnerable communities including low socioeconomic status Indigenous and Non-Indigenous populations living with dementia, in both metropolitan and rural communities. Furthermore, we investigate possible prevention strategies and provide suggestions for future research on the topic of Australian bushfires and heatwaves and their impact on people living with dementia. This paper includes recommendations to ensure rural communities have access to appropriate support services, medical treatment, awareness, and information surrounding dementia.


Sign in / Sign up

Export Citation Format

Share Document